Bluesky Facebook Reddit Email

Researchers realize high-speed uni-traveling-carrier photodiode

11.28.22 | University of Science and Technology of China

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Photodiodes with high speed and efficiency are particularly advantageous to the exponential growth of data communication traffic. However, vertical detector design still faces difficulties in improving high responsivity while maintaining low dark current and high bandwidth.

In a recent study published in ACS Applied Electrical , a research team led by Prof. WANG Liang and Prof. HAN Zhengfu from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences designed a low-dark-current and high-bandwidth photodiode with improved responsivity.

The researchers achieved epitaxial structure growth with low defect density and high doping accuracy by adjusting the growth parameters such as MOCVD temperature, V/III ratio, and doping concentration. They designed a plasmonic InP/InGaAs uni-traveling-carrier photodiode with optical antenna arrays, which exhibits a low dark current of 2.52 nA at a −3 V bias voltage, a high bandwidth of over 40 GHz, and a high responsivity of 0.12 A/W. The absorption efficiency of the photodiode shows a 2-fold improvement using plasmonic resonance generated by nanodisks at 1550 nm.

Compared with other devices, its responsivity is enhanced by 147% and its signal-to-noise ratio is higher, which helps provide a high-quality domestic chip for high-speed optical interconnection networks.

This study provides the core chip for optical receiver modules applied to data centers, breaking down barriers in key hardware technology for higher-speed optical modules in the future.

ACS Applied Electronic Materials

10.1021/acsaelm.2c01052

Plasmonic Resonance-Enhanced Low Dark Current and High-Speed InP/InGaAs Uni-Traveling-Carrier Photodiode

22-Sep-2022

Keywords

Article Information

Contact Information

Jane Fan
University of Science and Technology of China
qfan@ustc.edu.cn

How to Cite This Article

APA:
University of Science and Technology of China. (2022, November 28). Researchers realize high-speed uni-traveling-carrier photodiode. Brightsurf News. https://www.brightsurf.com/news/LDEG06N8/researchers-realize-high-speed-uni-traveling-carrier-photodiode.html
MLA:
"Researchers realize high-speed uni-traveling-carrier photodiode." Brightsurf News, Nov. 28 2022, https://www.brightsurf.com/news/LDEG06N8/researchers-realize-high-speed-uni-traveling-carrier-photodiode.html.