Bluesky Facebook Reddit Email

The effects of primer pairs, PCR conditions, and peptide nucleic acid clamps on plant root fungal diversity assessment

02.26.24 | Tsinghua University Press

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.


Fungi are frequently found both around and within plant tissues (especially in roots) and are involved in both plant nutrient acquisition and resistance to pathogens. Thus, characterizing the diversity and composition of plant-associated fungal communities has been a growing interest in recent years.

High-throughput sequencing (HTS), also called metabarcoding, has become a prominent tool to assess complex microbial communities from environmental samples. However, HTS applied to plant-associated fungal communities is challenging, due to plant and fungal DNA co-amplification. Fungal-specific primers, Peptide Nucleic Acid (PNA) clamps, or adjusting PCR conditions are described as efficient approaches to limit plant DNA contamination.

This study led by Dr. Coralie Bertheau (Université de Franche-Comté) evaluated the combined effects of primer pairs, associated annealing temperature (Ta), and PNA clamps in determining the fungal community diversity and composition associated with plant roots. Three primers (fITS7/ITS4, gITS7/ITS4, and 5.8S-Fun/ITS4-Fun) targeting the ribosomal internal transcribed spacer (ITS) 2 region were evaluated alone or in combination with PNA clamps both on nettle ( Urtica dioica ) root DNA and a mock fungal community.

The team found that PNA clamps did not improve the richness or diversity of the fungal communities but increased the number of fungal reads. Among the tested factors, the most significant was the primer pair. Specifically, the 5.8S-Fun/ITS4-Fun pair exhibited a higher OTU richness but fewer fungal reads.

“The results demonstrated that the choice of primers is critical for limiting plant and fungal DNA co-amplification. PNA clamps increase the number of fungal reads when ITS2 is targeted but do not result in higher fungal diversity recovery at high sequencing depth. At lower read depths, PNA clamps might enhance microbial diversity quantification for primer pairs lacking fungal specificity” Dr. Coralie Bertheau said.

See the article:

Primer pairs, PCR conditions, and peptide nucleic acid clamps affect fungal diversity assessment from plant root tissues

https://www.tandfonline.com/doi/full/10.1080/21501203.2023.2301003

Mycology: An International Journal on Fungal Biology

10.1080/21501203.2023.2301003

CrossRef citations to date 7 Altmetric Listen Research Article Primer pairs, PCR conditions, and peptide nucleic acid clamps affect fungal diversity assessment from plant root tissues

4-Feb-2024

Keywords

Article Information

Contact Information

Mengdi Li
Tsinghua University Press
limd@tup.tsinghua.edu.cn

How to Cite This Article

APA:
Tsinghua University Press. (2024, February 26). The effects of primer pairs, PCR conditions, and peptide nucleic acid clamps on plant root fungal diversity assessment. Brightsurf News. https://www.brightsurf.com/news/LMJZKG5L/the-effects-of-primer-pairs-pcr-conditions-and-peptide-nucleic-acid-clamps-on-plant-root-fungal-diversity-assessment.html
MLA:
"The effects of primer pairs, PCR conditions, and peptide nucleic acid clamps on plant root fungal diversity assessment." Brightsurf News, Feb. 26 2024, https://www.brightsurf.com/news/LMJZKG5L/the-effects-of-primer-pairs-pcr-conditions-and-peptide-nucleic-acid-clamps-on-plant-root-fungal-diversity-assessment.html.