Bluesky Facebook Reddit Email

High efficiency, salt resistance and high strength desalination achieved with new Janus sponge-like hydrogel solar evaporator

05.15.23 | KeAi Communications Co., Ltd.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.


In the face of increasing global scarcity of freshwater resources, desalination is considered one of the most effective ways to alleviate this problem. However, it does come with a catch—efficient and low-cost evaporation materials are key to achieving large-scale applications.

Hydrogels present a promising opportunity, yet conventional uses of these in interfacial solar evaporators still lack the ability to satisfy the trade-off for high evaporation rate, salt resistance and durable mechanical properties.

Therefore, most traditional hydrogel materials are only suitable for low-salinity brine, far from the requirements of long-term evaporation and treatment of industrial high-salinity wastewater. It has been demonstrated that the salt resistance of hydrogels can be enhanced by constructing interpenetrating 3D macropore structure. Nonetheless, rapid water transport and high water content can lead to increased conductive heat loss. This problem can be solved by further designing the Janus structure. Furthermore, although various methods for creating such structures exist, they are often complex and lack surface stability.

To that end, a team of researchers from the School of Chemical Engineering and Technology at Hebei University of Technology in Tianjin, China, introduced hydrophobic fumed nano-silica aerogel (SA) into the hydrogel production process. The ultra-lightweight and super-hydrophobic properties of SA enable it to spontaneously migrate and aggregate to the upper region of the hydrogel during the gelation process, forming a Janus structure.

“We know that the regulation of pore structure can also balance the problem of increased heat loss caused by the high salt resistance of the sponge-like hydrogel,” explained Aqiang Chu, lead author of the study published in the KeAi journal Green Energy & Environment . “Consequently, we incorporated agar (AG) to enhance the comprehensive performance of hydrogel evaporators.”

Notably, AG has a thickening function, which in this case stabilizes the bubble structure formed during the foaming process, and thus help regulate the pore structure of the hydrogel.

“The large number of hydroxyl groups on the AG chain can at once reduce the enthalpy of water evaporation by interacting with water and forming ether bonds with polyvinyl alcohol to form a robust cross-linked network, contributing to improved mechanical properties,” Chu explained further.

“Coupled with the low cost and environmental friendliness of these preparation materials, our Janus dual-network sponge-like hydrogel solar evaporator shows great potential for practical applications in the field of interfacial solar evaporation,” added corresponding author Hao Li.

###

Contact the corresponding author: Hao Li, ctstlihao@hebut.edu.cn

The publisher KeAi was established by Elsevier and China Science Publishing & Media Ltd to unfold quality research globally. In 2013, our focus shifted to open access publishing. We now proudly publish more than 100 world-class, open access, English language journals, spanning all scientific disciplines. Many of these are titles we publish in partnership with prestigious societies and academic institutions, such as the National Natural Science Foundation of China (NSFC).

Green Energy & Environment

10.1016/j.gee.2023.04.003

Experimental study

Not applicable

Biomass-enhanced Janus sponge-like hydrogel with salt resistance and high strength for efficient solar desalination

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Keywords

Article Information

Contact Information

Ye He
KeAi Communications Co., Ltd.
cassie.he@keaipublishing.com

How to Cite This Article

APA:
KeAi Communications Co., Ltd.. (2023, May 15). High efficiency, salt resistance and high strength desalination achieved with new Janus sponge-like hydrogel solar evaporator. Brightsurf News. https://www.brightsurf.com/news/LPE9DQN8/high-efficiency-salt-resistance-and-high-strength-desalination-achieved-with-new-janus-sponge-like-hydrogel-solar-evaporator.html
MLA:
"High efficiency, salt resistance and high strength desalination achieved with new Janus sponge-like hydrogel solar evaporator." Brightsurf News, May. 15 2023, https://www.brightsurf.com/news/LPE9DQN8/high-efficiency-salt-resistance-and-high-strength-desalination-achieved-with-new-janus-sponge-like-hydrogel-solar-evaporator.html.