Bluesky Facebook Reddit Email

Discovering hidden order in disordered crystals

04.27.23 | Tokyo Institute of Technology

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.


Researchers at Tokyo Tech have discovered hidden chemical order of the Mo and Nb atoms in disordered Ba 7 Nb 4 MoO 20 , by combining state-of-the-art techniques, including resonant X-ray diffraction and solid-state nuclear magnetic resonance. This study provides valuable insights into how a material’s properties, such as ionic conduction, can be heavily influenced by its hidden chemical order. These results would stimulate significant advances in materials science and engineering.

Determining the precise structure of a crystalline solid is a challenging endeavor. Materials properties such as ion conduction and chemical stability, are heavily influenced by the chemical (occupational) order and disorder. However, the techniques that scientists typically use to elucidate unknown crystal structures suffer from serious limitations.

For instance, X-ray and neutron diffraction methods are powerful techniques to reveal the atomic positions and arrangement in the crystal lattice. However, they may not be adequate for distinguishing different atomic species with similar X-ray scattering factors and similar neutron scattering lengths.

To tackle this issue, a research team led by Professor Masatomo Yashima of Tokyo Institute of Technology (Tokyo Tech) in Japan sought to develop a novel and more powerful approach to analyze the order and disorder in crystals. They combined four different techniques to analyze the crystal structure of an important ionic conductor, Ba 7 Nb 4 MoO 20 . “We chose Ba 7 Nb 4 MoO 20 as Ba 7 Nb 4 MoO 20 -based oxides and related compounds are a class of emerging materials with interesting properties such as high ionic conduction and high chemical stability,” explains Prof. Yashima. “However, given that both the Mo 6+ and Nb 5+ cations have similar scattering powers, all structural analyses of Ba 7 Nb 4 MoO 20 until now have been performed assuming complete Mo/Nb disorder.”

As described in their recent paper published in Nature Communications , the researchers used an approach that combined two experimental techniques, resonant X-ray diffraction (RXRD) and solid-state nuclear magnetic resonance (NMR) aided by computational calculations based on density functional theory (DFT). The NMR provided direct experimental evidence that the Mo atoms occupy only the crystallographic M 2 site in Ba 7 Nb 4 MoO 20 , indicating the chemical order of Mo atoms.

Next, the researchers used RXRD to quantify the occupancy factors of Mo and Nb atoms. They found that the occupancy factor of Mo atoms was 0.5 at the M 2 site but zero at all other sites. Interestingly, the M 2 site is close to the oxide-ion conducting, oxygen-deficient layer of Ba 7 Nb 4 MoO 20 . This suggests that the Mo atoms at the M 2 site have key role in the high ion conduction of Ba 7 Nb 4 MoO 20 . Furthermore, DFT calculations indicated that the Mo ordering stabilizes Mo excess composition exhibiting high ionic conductivity. Positions, occupancy, and atomic displacements of protons and oxide ions were also determined by neutron diffraction.

“Our results demonstrate that the Mo order affects the material properties of Ba 7 Nb 4 MoO 20 ,” highlights Prof. Yashima. “In this regard, our work represents a major advance in our understanding of the correlation between the crystal structure and the material properties of ionic conductors.” Further, in contrast to single-crystal X-ray and neutron diffraction, the proposed approach can even be extended to other polycrystalline and powdered samples.

Overall, the methodology presented in this study can open up new avenues for an in-depth analysis of chemical order/disorder in materials. In turn, this could lead to the development of physics, chemistry, and materials science and technology.

Only time will tell what other hidden orders and disorders we will stumble upon!

###

Yashima Research Group

Novel Oxychloride Shows High Stability and Oxide-Ion Conduction through Interstitial Oxygen Site | Tokyo Tech News

Fueling the Future with New Perovskite-related Oxide-ion Conductors | Tokyo Tech News

New Ba7Nb4MoO20-Based Materials with High Oxygen-Ion Conductivity Could Open Sustainable Future | Tokyo Tech News

New High Proton Conductors with Inherently Oxygen Deficient Layers Open Sustainable Future | Tokyo Tech News

Getting through the bottleneck—A new class of layered perovskite with high oxygen-ion conductivity | Tokyo Tech News

Apatite-Type Materials without Interstitial Oxygens Show High Oxide-Ion Conductivity by Overbonding | Tokyo Tech News

About Tokyo Institute of Technology

Tokyo Tech stands at the forefront of research and higher education as the leading university for science and technology in Japan. Tokyo Tech researchers excel in fields ranging from materials science to biology, computer science, and physics. Founded in 1881, Tokyo Tech hosts over 10,000 undergraduate and graduate students per year, who develop into scientific leaders and some of the most sought-after engineers in industry. Embodying the Japanese philosophy of “monotsukuri,” meaning “technical ingenuity and innovation,” the Tokyo Tech community strives to contribute to society through high-impact research.

https://www.titech.ac.jp/english/

Nature Communications

10.1038/s41467-023-37802-4

Experimental study

Not applicable

Hidden chemical order in disordered Ba7Nb4MoO20 revealed by resonant X-ray diffraction and solid-state NMR

24-Apr-2023

The authors declare no competing interests.

Keywords

Article Information

Contact Information

Emiko Kawaguchi
Tokyo Institute of Technology
kawaguchi.e.aa@m.titech.ac.jp

Source

How to Cite This Article

APA:
Tokyo Institute of Technology. (2023, April 27). Discovering hidden order in disordered crystals. Brightsurf News. https://www.brightsurf.com/news/LQ4230N8/discovering-hidden-order-in-disordered-crystals.html
MLA:
"Discovering hidden order in disordered crystals." Brightsurf News, Apr. 27 2023, https://www.brightsurf.com/news/LQ4230N8/discovering-hidden-order-in-disordered-crystals.html.