As global efforts to combat climate change intensify, electrochemical CO₂ reduction reaction (CO 2 RR) stands out as a critical technology for converting greenhouse gases into valuable fuels and chemicals. Yet, a persistent bottleneck has hindered progress: the lack of precise tools to characterize and optimize the porous catalyst layers where reactions occur. A new study published in Frontiers in Energy resolves this challenge by deploying deep learning (DL) to map microscopic structures and simulate mass transport in CO₂RR catalyst layers with unprecedented accuracy.
A research team at Shanghai Jiao Tong University has developed a systematic framework that combines semantic-segmentation AI models with experimental validation to analyze catalyst layers (CLs). Using silver nanoparticles as catalysts and Nafion ionomer as a binder, the team fabricated CLs with varying ionomer-to-catalyst (I/C) ratios (0.2, 0.4, and 0.6) to dissect how composition affects performance.
Key Findings
The integrated framework translates nanoscale morphology directly into device-level performance metrics, providing a scalable blueprint for industrial CO₂ electrolyzers. By minimizing ionomer loading to 0.2, catalyst layers can sustain high current densities without sacrificing selectivity or durability, moving carbon-neutral fuel production closer to market deployment.
Frontiers in Energy
Experimental study
Not applicable
Deep learning-based structural characterization and mass transport analysis of CO2 reduction catalyst layers
15-Jul-2025