WASHINGTON, Oct. 15-- A U.S. Department of Agriculture scientist and colleagues in three other countries have found a gene in rye that could help wheat, a major food staple, grow on millions of acres worldwide that are now hostile to the crop.
Plant geneticist J. Perry Gustafson of USDA's Agricultural Research Service said the gene enables wheat to resist toxins in aluminum often found in acid soils. "No plant likes aluminum," he said. "It limits crop productivity on a large scale around the world."
Overseas and in this country, about 5 billion acres of acid soil harbor aluminum, he said. "Now that rye's anti-aluminum gene has been located, the goal is to put it to work using biotechnology in wheat varieties worldwide."
USDA's Acting Under Secretary for Research, Education and Economics, Catherine Wotecki, said the research is the "kind needed to better feed future generations of people worldwide. The discovery of this gene could help farmers utilize the vast acres of acid soil in the world where aluminum-tolerant cereal grains can be grown."
Gustafson and co-researchers in Brazil, Poland and Mexico discovered the gene as part of eight years of work on locating new genes in wheat and rye. "A major objective has been to find genes that breeders worldwide can use to develop new high-yielding commercial varieties of wheat and rye," said Wotecki.
Gustafson and colleagues made their genetic discovery by unlocking the mysterious role of protein synthesis in blocking the uptake of aluminum in the cereal plant's roots. He works at the ARS Plant Genetics Research Unit in Columbia, Mo.
"If the international collaboration and support continues, we should be able to give wheat breeders lines that are more aluminum tolerant than existing varieties in about five years," Gustafson said. That would offer potentially higher yields for a hungry world, he added.
World population, now 5.8 billion, may grow to more than 9 billion by the year 2046, according to estimates by the U.S. Bureau of the Census.
Other USDA crop research having worldwide implications includes: