Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.

Keep it secret: Cloud data storage security approach taps quantum physics

A team in China has developed a cost-effective cloud storage solution that uses quantum key distribution and Shamir's secret sharing algorithm to provide quantum security and fault tolerance. The method disperses keys via the algorithm, applies erasure coding, and securely transmits data through QKD-protected networks.

Using sound to test devices, control qubits

Researchers at Harvard John A. Paulson School of Engineering and Applied Sciences have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators, which could improve communications and offer new control for quantum computing. The technique also allows for acoustically-c...

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Precise control of photonic angular momentum

The development of a new photonic technique enables the precise control of photonic angular momentum, allowing for the efficient recognition and real-time control of total angular momentum modes. The technique, which involves the symmetrical cascading of two units, has been experimentally demonstrated to recognize up to 42 individual T...

Exploring parameter shift for quantum fisher information

Researchers developed a new method to estimate gradients and derivatives on quantum computers, enabling faster computations. This technique can be applied to various fields such as cryptography, optimization, and materials science.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

Illuminating new horizons: Navigating nonlinear scattering with precision

Researchers at Shanghai Jiao Tong University have developed a new scattering matrix method that can sculpt light output with minimal optimization time. The method offers unparalleled nonlinear scattered light control, enabling high-resolution scanning microscopy and particle trapping through dense, scattering media.

Graphene: Perfection is futile

Researchers at TU Wien developed a comprehensive computer model of realistic graphene structures, showing that the material's desired effects are stable even with defects. This means graphene can be used in quantum information technology and sensing without needing to be perfect.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

New technique measures structured light in a single shot

Researchers have developed a new measurement technique that uses the Kramers-Kronig relation to untangle complex helical light patterns from camera intensity measurements. This allows for single-shot retrieval of orbital angular momentum spectrum information, accelerating and simplifying the process compared to conventional on-axis int...

An easier way to learn quantum processes

Researchers at EPFL have found a way to teach quantum computers to learn and process information using principles inspired by quantum mechanics. By training quantum neural networks (QNNs) on a few simple examples called 'product states', the computer can effectively grasp complex dynamics of entangled quantum systems.

Finding the flux of quantum technology

Researchers at the University of Pittsburgh have discovered a way to efficiently separate and harness individual photons, a critical component in quantum photonics. This breakthrough has the potential to significantly increase the speed of quantum technology applications.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

UW students have turned Schrödinger's cat on its head

The UW students' achievement enables the implementation of a fractional Fourier Transform in optical pulses, allowing for more precise pulse identification and filtering. This innovation has significant implications for spectroscopy and telecommunications, where precise signal processing is crucial.

Move over diamond. hBN is quantum’s new best friend.

Researchers have developed a method to stabilize the –1 state of boron vacancy defects in hBN, enabling it to replace diamond as a material for quantum sensing and quantum information processing. The team discovered unique properties of hBN and characterized its material, opening up new avenues for study.

First steps towards realizing mechanical qubits

Scientists have successfully created conditions for mechanical qubits by engineering anharmonicity close to the ground state. By cooling a nanotube device to near absolute zero, researchers demonstrated a new mechanism that boosts nonlinear effects in the system, paving the way for quantum computing.

Promising building blocks for photonic quantum simulators

Researchers have created a new technology capable of processing vast amounts of information generated by quantum systems. This is achieved through the coupling of deterministic single photon light sources with specially designed integrated photonic circuits.

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

Boost for the quantum internet

Researchers at the University of Innsbruck have created a fully functioning quantum repeater node, enabling entanglement creation and swapping over 50 kilometers. This breakthrough demonstrates the feasibility of connecting distant cities through secure, high-performance quantum communication networks.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.

Breaking the heat barrier of computing innovation

Researchers have developed a new technology that could revolutionize computing by moving beyond the limitations of traditional semiconductors. Coherent antiferromagnetic spintronics enables information to travel without generating significant heat, potentially leading to a hundredfold increase in processing speed and energy savings.

All-optical quantum state sharing via continuous variable system

Researchers developed an all-optical quantum state sharing protocol that uses continuous variable systems to share secret information between multiple parties. The new method successfully implemented in a low-noise amplifier and demonstrated higher average fidelity than classical limits.

Absolute zero in the quantum computer

Researchers at TU Wien develop a quantum version of the third law of thermodynamics, finding that absolute zero is theoretically attainable but requires infinite energy, time, or complexity. This breakthrough reconciles quantum physics with thermodynamics, paving the way for the development of practical quantum computers.

Scientists open door to manipulating ‘quantum light’

Researchers at the University of Sydney and the University of Basel have demonstrated the ability to manipulate and identify small numbers of interacting photons with high correlation. This achievement represents a significant step towards advancing medical imaging and quantum computing technologies.

Davis Instruments Vantage Pro2 Weather Station

Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.

Scientists boost quantum signals while reducing noise

Researchers have developed a new device that can effectively redistribute noise and reduce its impact on quantum measurements. By 'squeezing' the noise, they can make more accurate measurements, enabling faster and more precise quantum systems. The device has the potential to improve multi-qubit systems and metrological applications.

New spin control method brings billion-qubit quantum chips closer

Engineers at Diraq and UNSW Sydney discovered a new way to precisely control single electrons in quantum dots using electric fields, which is less bulky and requires fewer parts. This breakthrough technique can help achieve the goal of fabricating billions of qubits on a single chip for commercial production.

Creality K1 Max 3D Printer

Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.

Quantum receiver enhanced by adaptive learning

Researchers developed a quantum receiver that uses adaptive learning to improve signal decoding in noisy environments. The upgraded receiver achieved record-high efficiency and robust interference visibility, with improved performance compared to conventional designs.

Pulses driven by artificial intelligence tame quantum systems

Researchers from Okinawa Institute of Science and Technology (OIST) have developed a machine learning-based method to discover non-intuitive pulse sequences that can cool mechanical objects to ultracold temperatures faster than traditional methods. This breakthrough showcases the utility of artificial intelligence in quantum technologies.

ASU launches new quantum research collaborative

The Arizona State University's Quantum Collaborative is a major initiative promoting understanding of advanced quantum technology and forging partnerships to advance it. The collaborative aims to develop a robust talent pipeline for a quantum-enabled economy through certifications, upskilling opportunities, and modified degree programs.

New form of universal quantum computers

Researchers at the University of Innsbruck have developed a new architecture for universal quantum computers using parity-based qubits. This design reduces the complexity of implementing complex algorithms while also offering hardware-efficient error correction.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

Through the quantum looking glass

Scientists have developed a thin device that can produce complex webs of entangled photons, enabling new information processing schemes and advanced encryption methods. The device uses a metasurface to control the phenomenon of quantum entanglement, paving the way for more compact and powerful computing and sensing technologies.

Optimizing SWAP networks for quantum computing

Researchers optimized the ZZ SWAP network protocol, introducing a new technique to improve quantum error mitigation. This enables more efficient execution of quantum algorithms like QAOA, which can solve combinatorial optimization problems.

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.

Quantum network nodes with warm atoms

Physicists at the University of Basel have created a quantum memory that stores single photons in a warm atomic gas, allowing for efficient storage and retrieval of quantum information. The node can already be used for interesting applications, such as synchronizing randomly produced single photons.

UIC joins national quantum computing center

The University of Illinois Chicago has joined the Co-design Center for Quantum Advantage, a US Department of Energy-funded center focused on building scalable quantum computer systems. The partnership will open new opportunities for UIC students in quantum engineering and collaboration with researchers.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

New approach may help clear hurdle to large-scale quantum computing

A Harvard-led team created a new method for processing quantum information that allows for the dynamic change of atoms' layout during computation, expanding capabilities and enabling self-correction of errors. This approach uses entanglement to connect atoms remotely and can process exponentially large amounts of information.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

Quantum sensors: Measuring even more precisely

Physicists at the University of Innsbruck have developed a programmable quantum sensor that can measure with even greater precision, using tailored entanglement to optimize performance. The sensor autonomously finds its optimal settings through free parameters, promising a significant advantage over classical computers.

Growing extremely tiny, uniformly sized diamonds — without explosives

Researchers have created ultra-uniform nanodiamonds using a new chemical process that mimics the conditions found in natural diamond formation. The tiny crystals are crucial for drug delivery, sensors, and quantum computer processors. With this breakthrough, scientists can now control single atoms within larger structures.

Aranet4 Home CO2 Monitor

Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.

Physicists shed light on the darkness

Researchers at the University of Innsbruck have successfully manipulated dark states in superconducting circuits using microwave radiation. The team's discovery opens up new possibilities for quantum simulations and information processing, which could have significant implications for fields such as chemistry and materials science.

Quantum errors made more tolerable

Researchers at ETH Zurich have successfully implemented a novel measurement scheme for finite-energy states, extending the coherence time of a trapped ion quantum oscillator by a factor of three. This breakthrough addresses a major challenge in quantum computing and brings us closer to enabling fault-tolerant quantum computers.

NSF funds Rice effort to measure, preserve quantum entanglement

Physicist Guido Pagano has won a prestigious CAREER award from the National Science Foundation (NSF) to study quantum entanglement and develop new error-correcting tools for quantum computation. He aims to understand how measurement affects entangled systems and create tools to correct errors caused by quantum decoherence.

A-list candidate for fault-free quantum computing delivers surprise

Physicists at Rice University have found telltale signs of antiferromagnetic spin fluctuations coupled to superconductivity in uranium ditelluride, a rare material promising fault-free quantum computing. The discovery upends the leading explanation of how this state of matter arises in the material.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.