Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Comprehensive review of heterogeneously integrated 2D materials

Researchers from Sungkyunkwan University provide a comprehensive review of heterogeneously integrated two-dimensional materials, enabling the design of novel devices. The review discusses various 2D heterostructures, their physical characteristics, and new functional applications.

Creating 2D heterostructures for future electronics

Northwestern University researchers have successfully integrated graphene and borophene into 2D heterostructures, enabling the creation of ultrahigh density devices. The achievement demonstrates a significant step towards creating integrated circuits from these nanomaterials.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Scientists create fully electronic 2-dimensional spin transistors

Researchers at the University of Groningen have successfully created a two-dimensional spin transistor in graphene, which uses charge-to-spin conversion to generate spin currents. The spin transistor can be switched on and off using an electric field, enabling the creation of all-electrical spin circuits.

Atomic 'patchwork' using heteroepitaxy for next generation semiconductor devices

Scientists from Tokyo Metropolitan University developed a continuous process to grow 2D TMDC heterostructures with varying composition and perfectly flat interfaces. This breakthrough enables the creation of atomically thin electronics with distinct properties, paving the way for devices with unparalleled energy efficiency and novel op...

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

Graphene quantum dots for single electron transistors

Researchers developed graphene quantum dots embedded in hexagonal boron nitride, enabling successful synthesis of high-quality single-electron transistors. The study demonstrated the manifestation of Coulomb blockade phenomena in each graphene quantum dot as a separate single electron transmission channel.

1 + 1 does not equal 2 for graphene-like 2D materials

Researchers discovered that graphene-like materials stack together in a way that changes their properties, creating novel hybrid materials. The twist angle controls the hybridization, enabling precise control over composite materials and nano-devices.

Semiconductors combine forces in photocatalysis

A two-dimensional heterostructure of black phosphorus and bismuth tungstate shows enhanced photocatalytic activity, splitting water and breaking down nitrogen monoxide more effectively than conventional materials. The addition of a platinum-based co-catalyst further boosts the process efficiency.

The Coulomb interaction in van der Waals heterostructures

Researchers studied electronic structures of van der Waals heterostructures under applied vertical electric field, revealing Coulomb interaction's impact on bandedges. This nonlinear variation is attributed to interlayer charge transfer, essential for nanoelectronic device applications.

GoPro HERO13 Black

GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.

Beyond conventional solution-process for 2-D heterostructure

Scientists have developed a new method to grow organic-inorganic hybrid perovskite nanocrystals on metal sulfide nanosheets using a wet-chemical process, enabling scalable production of solution-processible heterostructures. This approach improves light absorption and energy transfer in optoelectronic devices.

Scientists discover how to control the 'excitation' of electronics

Researchers have successfully controlled excitonic effects in two-dimensional van der Waals heterostructures, a crucial step towards creating electronics with more controlled properties. The breakthrough allows for the creation of unique new materials for solar panels and electronics.

Sky & Telescope Pocket Sky Atlas, 2nd Edition

Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.

Beyond conventional solution-process for 2D heterostructure

Researchers have developed a facile wet-chemical method to directly grow organic-inorganic hybrid perovskite nanocrystals on dispersible MoS2 nanosheets. This enables the scalable production of solution-processible heterostructures, which exhibit improved light absorption and energy transfer due to their epitaxial interface. The use of...

Building nanomaterials for next-generation computing

Researchers created a unified Time-Temperature-Architecture Diagram to guide the fabrication of heterostructures with favorable electronic properties. The blueprint enables the generation of numerous nanostructures with physical properties of interest, paving the way for advancements in computing power and transistors.

Robot developed for automated assembly of designer nanomaterials

A Japanese research team has developed an automated robot that greatly speeds up the collection and assembly of 2D crystals to form van der Waals heterostructures. The robot can detect 400 graphene flakes an hour, stacking four layers in just a few minutes with minimal human input.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

Research accelerates quest for quicker, longer-lasting electronics

Researchers have successfully made magnetic topological insulators at room temperatures, demonstrating a potential breakthrough in creating faster and more efficient electronics. The development uses heterostructures to create magnetism in TI surfaces, allowing for reduced power consumption and increased robustness.

Hybrid heterostructures with programmable potentials

Researchers have developed hybrid organic-inorganic materials with fully controllable structural and electronic properties. By using molecular monolayers to create controllable periodic potentials on the surface of graphene, they can tailor the electronic behavior of graphene field-effect transistor devices.

Organic-inorganic heterostructures with programmable electronic properties

Scientists develop self-assembled organic molecular lattices with controlled geometry and atomic precision on top of graphene, inducing periodic potentials and unprecedented electrical, magnetic, piezoelectric, and optical functionalities. The approach allows for pre-programming and adjustment of the induced potentials.

Breakthrough in 'wonder' materials paves way for flexible tech

Researchers at University of Warwick developed a new technique to measure electronic structures of two-dimensional materials, paving the way for highly efficient nano-circuitry. This breakthrough could lead to smaller, flexible gadgets and revolutionized solar power with strong absorption and efficient power conversion.

Fluke 87V Industrial Digital Multimeter

Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.

Graphene photodetectors: Thinking outside the 2-D box

Researchers have developed a novel graphene photodetector that can efficiently detect low-energy photons using vertical heterostructures. The device harnesses the photo-thermionic effect to extract hot electrons from graphene, enabling fast and efficient optoelectronic applications.

'Odd couple' monolayer semiconductors align to advance optoelectronics

Researchers at Oak Ridge National Laboratory synthesized a stack of monolayers of two lattice-mismatched semiconductors, gallium selenide and molybdenum diselenide. The achievement demonstrates the promise of synthesizing mismatched layers to enable new families of functional two-dimensional materials.

IBS cleave few-layer samples of magnetic material NiPS3

The IBS Center for Correlated Electron Systems has successfully created monolayer and multilayer samples of the magnetic Van der Waals material NiPS3. This achievement lays the foundation for the development of high-speed, low-energy consuming semiconductors that can be integrated into various devices.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.

New physics and application of antiferromagnet uncovered

Researchers at Tohoku University discovered a new physics of antiferromagnets, where an applied current induces magnetization switching in neighboring ferromagnets. The findings enable the development of ultralow-power integrated circuits and neuromorphic computing devices with fast and reliable control.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.

A new step towards using graphene in electronic applications

Researchers have successfully created heterostructures with varying widths of graphene nanoribbons using molecular self-assembly. This breakthrough could lead to the deployment of graphene in commercial electronic applications, taking advantage of its unique properties.

Layered graphene sandwich for next generation electronics

Scientists have successfully demonstrated how combining hexagonal boron nitride and graphene can create perfect crystals capable of being used in ultra-high frequency devices. The research paves the way for innovative applications in high-frequency electronics.

Competition for graphene

Researchers at Berkeley Lab have observed ultrafast charge transfer in MX2 materials, a new family of 2-D semiconductors. The recorded charge transfer time is comparable to the fastest times for organic photovoltaics, opening up potentially rich new avenues for photonics and optoelectronics.

Lighting the way to graphene-based devices

Berkeley Lab researchers have developed a technique to modify graphene boron nitride heterostructures using visible light, preserving high electron mobility. This method enables p–n junctions and flexible doping profiles without sacrificing material quality.

Beyond graphene: Controlling properties of 2-D materials

Scientists successfully create 'heterostructures' with novel functionalities, such as tunnelling transistors and solar cells. By controlling the relative orientation between graphene and boron nitride, researchers can reconstruct the crystal structure of graphene and open a band-gap.

Apple iPad Pro 11-inch (M4)

Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.

On the road to fault-tolerant quantum computing

Researchers from China's Tsinghua University and the US Department of Energy's Lawrence Berkeley National Laboratory have demonstrated high-temperature superconductivity in a topological insulator. This breakthrough is essential for creating 'fault-tolerant' quantum computers, which can solve complex problems much faster than current m...

How graphene and friends could harness the Sun's energy

Researchers have developed a new class of ultra-sensitive photovoltaic devices using graphene and transition metal dichalcogenides. The devices can potentially be used as ultrasensitive photodetectors or very efficient solar cells, generating electricity from sunlight absorbed by exposed walls.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

New material promises better solar cells

Researchers at Vienna University of Technology discovered a new class of materials that can be used to create highly efficient ultra-thin solar cells. The oxide heterostructures separate electrons and holes using an electric field, increasing efficiency.