Researchers at PNNL are exploring how viruses infect algae to develop a better understanding of the pathogen-host battleground. They are also working on improving climate models by representing atmospheric aerosols more accurately and developing more efficient digital electronics.
Researchers developed a new method to find breakthrough materials for quantum applications by combining theoretical screening with atomic-scale fabrication. The approach identified promising defects in materials such as tungsten disulfide, which have never been seen before.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
For the first time, researchers have measured quadrupolar nuclei using zero-field nuclear magnetic resonance (NMR) spectroscopy. This breakthrough enables precise analysis of molecular structures and spin interactions, with potential applications in medicine and materials science.
Researchers at the University of California - Riverside have proposed a chain of quantum magnetic objects called spin centers that can simulate exotic magnetic phases of matter. This breakthrough could lead to more efficient ways of storing and transferring information, as well as the development of room temperature quantum computers.
Researchers have developed a novel method to significantly enhance quantum technology performance by leveraging cross-correlation of two noise sources. This approach extends coherence time, improves control fidelity, and increases sensitivity for high-frequency sensing.
A UTA-led program is equipping high school teachers and students with college-level quantum concepts to fill a growing talent gap in the $44 billion QIS technology market. The Quantum for All program aims to integrate quantum principles into national STEM standards, starting with Texas this fall.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
A research team from USTC has demonstrated the realization of time reversal through input-output indefiniteness in a photonic system, achieving a high success probability of 99.6%. This breakthrough shows significant advantages over traditional methods and opens up new possibilities for quantum information and photonic technologies.
Scientists have developed a new technique to create four-dimensional qudits that can transmit more data in a single go, promising a future quantum internet with faster data transfer rates and increased resistance to errors.
Researchers at ETH Zurich have successfully manipulated quantum states of single electron spins using spin-polarized currents. This method, which bypasses traditional electromagnetic fields, has the potential to control quantum states with unprecedented precision and localizability.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
Researchers successfully controlled Andreev bound states in bilayer graphene-based Josephson junctions using gate voltage, observing changes in real-time and confirming theoretical predictions. The discovery enables adjustment of energy levels, opening potential for diverse applications.
Physicists have achieved a record-setting level of electron mobility in a thin film of ternary tetradymite, a class of mineral found in gold and quartz deposits. The material's high electron mobility makes it suitable for efficient thermoelectric devices that convert waste heat into electricity.
Theoretical physicists at Utrecht University have discovered that fractals might hold the key to making electric currents flow without energy loss. By growing fractal structures on top of semiconductors, scientists have created materials with zero-dimensional corner modes and lossless one-dimensional edge states.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
A study led by FAMU-FSU College of Engineering Professor Wei Guo found that small bumps on solid neon surfaces create ring-shaped quantum states, enabling controlled manipulation of electrons. This alignment allows for optimized electron-on-solid-neon qubits with extended coherence times.
Researchers at the University of Texas at Austin have discovered topological vortices in polaron quasiparticles that contribute to generating electricity from sunlight. The discovery can help develop new solar cells and LED lighting with exceptional energy conversion efficiency.
Scientists at uOttawa have developed Fourier Quantum Process Tomography (FQPT) to validate quantum circuit performance. The technique allows for high-accuracy characterization with minimal measurements, enabling significant advancements in quantum computing.
A team of researchers has developed a platform to probe, interact with and control quantum systems in silicon. They used an electric diode to manipulate qubits inside a commercial silicon wafer, exploring how the defect responds to changes in the electric field and tuning its wavelength within the telecommunications band.
Researchers at Tohoku University have unveiled a groundbreaking discovery of a one-dimensional topological insulator (TI), a unique state of matter that differs from conventional metals, insulators, and semiconductors. This breakthrough has significant implications for the development of qubits and highly efficient solar cells.
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
Scientists have discovered unique periodic structures in manganese germanide that behave like magnetic monopoles and antimonopoles. The researchers studied the collective excitation modes of these structures, revealing a way to experimentally determine their spatial configuration.
Researchers have developed a method to create and control optical qubits in silicon with high precision, enabling the fabrication of reliable quantum computers. This breakthrough could advance quantum computing and networking capabilities, paving the way for breakthroughs in human health, drug discovery, and artificial intelligence.
Researchers at Clemson University have developed a new noncentrosymmetric triangular-lattice magnet, CaMnTeO6, which displays strong quantum fluctuations and nonlinear optical responses. This breakthrough material has the potential to lead to advancements in solid-state quantum computing, spin-based electronics, resilient climate chang...
UTA researchers found that sending material in advance and using Zoom features like chat, polling, and breakout rooms helped keep participants engaged. Short, relevant videos also proved effective in teaching complicated topics. The team recommends a structured approach with activities like icebreaker exercises to foster community enga...
Apple iPad Pro 11-inch (M4)
Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.
A team of researchers successfully demonstrated the principles of gravity-mediated entanglement in a photonic quantum simulation. This breakthrough provides crucial insights into the nature of gravity and its interaction with quantum mechanics.
Researchers have developed a flat lens made of tungsten disulphide with concentric rings that focuses light using diffraction, leveraging quantum effects to enhance its efficiency. The lens is half a millimeter wide and just 0.6 nanometres thick, making it the thinnest lens on Earth.
Researchers have developed a scalable, modular hardware platform that integrates thousands of interconnected qubits onto a customized integrated circuit. This 'quantum-system-on-chip' (QSoC) architecture enables precise control and tuning of a dense array of qubits, making it possible to achieve large-scale quantum computing.
GoPro HERO13 Black
GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.
Researchers at JPMorgan Chase, Argonne National Laboratory and Quantinuum show a quantum algorithmic speedup for the QAOA algorithm on the Low Autocorrelation Binary Sequences problem. The team demonstrates a significant step towards reaching quantum advantage, laying the foundation for future impact in production.
An international research team uses wavefunction matching to overcome computational challenges in ab initio methods for nuclear physics. By transforming realistic high-fidelity interactions into easily computable ones, they can perform accurate calculations that match real-world data on nuclear properties.
Researchers at Harvard University have successfully demonstrated the survival of quantum coherence in a chemical reaction involving ultracold molecules. The team observed intricate quantum dynamics underlying the reaction process and outcome, revealing that quantum coherence was preserved within the nuclear spin degree of freedom throu...
Sony Alpha a7 IV (Body Only)
Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.
Researchers at Harvard University have successfully demonstrated the first metro-area quantum computer network in Boston, using existing telecommunication fiber to send hacker-proof information via photons. The breakthrough overcomes signal loss issues, enabling the creation of a secure quantum internet.
A new device uses small amounts of light to process information, offering significant energy improvements over conventional optical switches. This technology could enable quantum communications, providing a promising alternative for data security against rising cyberattacks.
Researchers created a digital twin model that predicts and controls complex systems, achieving higher accuracy than traditional methods. The algorithm is compact, energy-efficient, and easy to implement, making it suitable for self-driving vehicles and other dynamic systems.
Researchers at ETH Zurich and Harvard/Princeton used quantum pointillism to study complex quantum systems made of interacting particles. They observed the formation of spin polarons, which are crucial for understanding magnetic behavior in materials.
Apple Watch Series 11 (GPS, 46mm)
Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.
Researchers at the University of Manchester have developed an ultra-pure form of silicon that can be used to construct high-performance qubit devices, a crucial component for scalable quantum computers. The breakthrough could enable the creation of one million qubits, which may be fabricated into pinhead-sized devices.
Researchers have discovered a promising approach to engineer semiconductors by tweaking isotopes, which can influence optical and electronic properties. The study demonstrates that small changes in isotope masses can shift the optical bandgap, enabling tunability for designing new devices.
Researchers developed a device controlling tiny magnetic states in ultrathin magnets using tunneling currents, enabling probabilistic computing. This breakthrough could lead to advanced memory devices and entirely new types of computers solving complex problems efficiently.
Nikon Monarch 5 8x42 Binoculars
Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.
Researchers propose an experiment to test the quantum nature of gravity without relying on entanglement. By using massive harmonic oscillators, they aim to reveal the quantumness of gravity in a way that was previously challenging due to the difficulty in creating heavy mass states.
Researchers have adapted a microwave circulator to precisely tune nonreciprocity in quantum computing, simplifying future work. The integrated nonreciprocal device enables controllable quantum interactions, paving the way for more sophisticated quantum computing hardware.
Researchers at NIST have modified a refrigerator to cool materials to within a few degrees above absolute zero, reducing cooldown time by half or quarter. This technology could save an estimated 27 million watts of power and $30 million in global electricity consumption.
GQ GMC-500Plus Geiger Counter
GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.
Scientists have discovered a rule governing the phenomenon of quantum entanglement, known as the 'entropy' of entanglement. This finding could lead to better understanding and manipulation of quantum entanglement, a key resource for future quantum computers.
Researchers have discovered a quantum effect in biological systems that may help the brain protect itself from degenerative diseases. The effect, called superradiance, occurs when many tryptophan molecules are arranged in a symmetrical network and can absorb and re-emit damaging ultraviolet light particles.
Researchers at Pritzker School of Molecular Engineering developed a blueprint for a quantum computer that can efficiently correct errors using qLDPC codes and reconfigurable atom arrays. This new system reduces the overhead required for quantum error correction, enabling scaling up quantum computers.
Creality K1 Max 3D Printer
Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.
Scientists have developed a novel universal light-based technique to control valley polarization in bulk materials, overcoming previous limitations. The discovery enables the manipulation of valley population without being restricted by specific material properties.
Researchers at MIT's EQuS group demonstrate a method to generate highly entangled states and shift between types of entanglement, including volume-law entanglement. This breakthrough offers a way to characterize a fundamental resource needed for quantum computing, enabling better understanding of information storage and processing.
A new study shines light on the properties of hexagonal boron nitride, a material used in electronic and photonics technologies. The research reveals fundamental energy excitation occurring at 285 millielectron volts, triggering single photons in harmonic electronic states.
HKU researchers created Quantum-Enhanced Diamond Molecular Tension Microscopy (QDMTM) to study cell adhesion forces, offering enhanced sensitivity and precision. The technique differentiates cells in various adhesion states, aligning with previous findings.
Researchers have achieved quantum interference among several single photons using a novel, resource-efficient platform, paving the way for scalable quantum technologies. This breakthrough represents a significant advancement in optical quantum computing.
Sky & Telescope Pocket Sky Atlas, 2nd Edition
Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.
Researchers at EPFL have developed a comprehensive model of the quantum-mechanical effects behind photoluminescence in thin gold films, which could drive the development of solar fuels and batteries. The study reveals unexpected quantum effects emerging in films as thin as 40 nanometers.
A research team has successfully created a new dimension in photonic machine learning by incorporating sound waves, enabling the creation of reconfigurable neuromorphic building blocks. This innovation has the potential to revolutionize computing tasks by providing high-speed and large-capacity solutions.
Researchers create butterfly-shaped nanographene with four unpaired π-electrons, demonstrating potential for advancements in quantum computing. The unique structure has highly correlated spins, extending coherence times of spin qubits.
Researchers at Princeton University have discovered a novel quantum effect termed “hybrid topology” in a crystalline material made of arsenic atoms. This finding combines two forms of topological quantum behavior—edge states and surface states, creating a new state of matter.
Davis Instruments Vantage Pro2 Weather Station
Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.
Researchers have successfully demonstrated how laser light can induce quantum behavior at room temperature, making non-magnetic materials magnetic. This breakthrough has the potential to revolutionize several areas of society, including information technologies.
Researchers visualize chiral interface state at atomic scale for the first time, allowing on-demand creation of conducting channels. The technique has promise for building tunable networks of electron channels and advancing quantum computing.
Researchers developed a Kerr-enhanced optical spring to boost the sensitivity of next-generation gravitational wave detectors. The new design successfully amplifies signals without increasing intracavity power, opening up new avenues for unraveling the universe's mysteries.
Researchers introduce new method to store data for generations using atomic-scale defects, exceeding current storage limits and energy consumption. The approach features 4D encoding schemes and can be applied to other materials with optically active defects.
Aranet4 Home CO2 Monitor
Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.
Researchers at MIT have discovered a new way that neutrons can interact with materials, potentially providing insights into material properties and quantum effects. The discovery involves the binding of neutrons to nanoscale atomic clusters called quantum dots.
Scientists have made significant breakthroughs in Quantum Key Distribution (QKD) technology, enabling secure data transfer over long distances. The new method uses Continuous Variable Quantum Key Distribution to distribute quantum-encrypted keys via fibre optic cables, paving the way for a quantum-secure internet infrastructure.
Researchers have successfully transferred electron spin to photons, enabling rapid communication over long distances. This breakthrough could revolutionize optical telecommunications and pave the way for ultrafast communication between Earth and Mars.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
Rice University engineers have demonstrated a way to control the optical properties of T centers, paving the way toward leveraging these point defects for building quantum nodes. By embedding a T center in a photonic integrated circuit, they increased the collection efficiency for single photon emission by two orders of magnitude.
Researchers have created a new quantum algorithm, CVQE, that can simulate electronic systems and study physical properties. This breakthrough could lead to faster calculations and more accurate predictions in materials science and chemistry.
Researchers have developed a scalable, fully-coupled annealing processor that outperforms simulating a fully coupled Ising system on a PC by 2,306 times. The processor incorporates 4096 spins and uses parallelized capabilities for accelerated problem-solving.
Apple AirPods Pro (2nd Generation, USB-C)
Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.
Researchers aim to create a nuclear clock using thorium isotopes, which could increase measurement accuracy by a factor of 3. The project uses light with orbital angular momentum to excite the nucleus, emitting photons that can be detected. This technology has the potential to answer fundamental questions in physics and astronomy.