Researchers at Pohang University of Science & Technology developed a hybrid porous structure using polyvinyl alcohol, enabling uniform lithium electrodeposition. The new design facilitated the transport of lithium ions, reducing 'dead Li' areas and internal short circuits, resulting in high stability after 200 charge-discharge cycles.
The team developed a deep learning AI technique to quantitatively analyze cation mixing using atomic structure images. This approach revealed that introducing metal dopants like aluminum, titanium, and zirconium into the transition metal layer fortified bonds between nickel and oxygen atoms, curbing cation mixing.
Researchers at RIKEN have developed a new catalyst that reduces the amount of iridium required for hydrogen production, achieving 82% efficiency and sustaining production for over 4 months. The breakthrough could revolutionize ecologically friendly hydrogen production and pave the way for a carbon-neutral energy economy.
A team of international researchers, led by TU Delft, found that introducing chemical short-range disorder into layered oxide materials used as cathode materials can significantly improve the stability and performance of lithium-ion batteries. This improvement results in a longer cycle life and shorter charging times for well-establish...
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
Researchers at RIKEN have improved the stability of a green hydrogen production process by using a custom-made catalyst, increasing its lifetime by almost 4,000 times. The breakthrough uses earth-abundant materials, making it more sustainable and potentially cost-effective for widespread industrial use.
A new type of aqueous battery is developed with a specific capacity of over 840 Ah/L and an energy density of up to 1200 Wh/L. The battery uses a mixed halogen solution as the electrolyte, enabling a multi-electron transfer reaction that improves kinetic and reversibility.
Researchers at PNNL have developed a safe, economical, and water-based flow battery made with commercially available industrial quantities of nitrogenous triphosphonate. The new design exhibits remarkable cycling stability over 1,000 charging cycles, outperforming previous iron-based batteries.
A new study published in Nature Sustainability suggests that decommissioned offshore structures may only provide limited long-term ecological benefits. The research analyzed over 530 scientific studies on the effects of marine artificial structures and found no conclusive evidence to support their use as artificial reefs.
A new technique for producing polymer solid electrolytes has been developed, eliminating the need for vacuum heat treatment and increasing production speed by 13-fold. This method ensures consistent thickness and surface quality of polymer solid electrolytes, ideal for battery production.
DJI Air 3 (RC-N2)
DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.
A research team developed an anode protection layer to prevent random electrodeposition of lithium, promoting stable 'bottom electrodeposition' and reducing unnecessary consumption. The breakthrough results in all-solid-state batteries with stable electrochemical performance over extended periods using ultrathin lithium metal anodes.
Researchers at UNIST have introduced non-solvating electrolytes to significantly improve the performance and lifespan of organic electrode-based batteries. The study achieved remarkable improvements in capacity retention and rate performance, with over 91% capacity retention after 1000 cycles.
Scientists found that doping with Scandium reduces structural changes but doesn't improve stability. Magnesium doping suppresses oxygen redox reaction, which is unexpected as magnesium triggers it in other layered manganese oxides.
Scientists have developed a method to convert waste carbon dioxide into formic acid, a colorless and pungent liquid with potential as a transportation fuel and petrochemical industry enhancer. The new method efficiently converted CO2 for over 5,000 hours, suggesting cost-effective scalability.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
Researchers have deciphered the key pathways of the sulfur reduction reaction in lithium-sulfur batteries, identifying dominant molecular pathways and critical roles of electrocatalysis. This breakthrough could lead to improved battery performance, reduced costs, and increased energy storage capacity.
A study from Chalmers University of Technology found that the production and use of ammonia as a marine fuel can lead to eutrophication, acidification, and emissions of potent greenhouse gases. Researchers warn that the pursuit of low-carbon fuels may create new environmental challenges.
Researchers at Tohoku University and Shanghai Jiao Tong University developed a machine learning method to predict the growth of carbon nanostructures on metal surfaces. The approach combines theoretical models with data from chemistry experiments to control the dynamics of material growth, leading to improved quality and efficiency.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
Researchers successfully improved lithium metal battery charging rates by adding a cesium nitrate compound, while maintaining long cycle life. The new findings challenge conventional beliefs about effective interphase components and contribute to the development of high-energy density batteries.
Researchers at Chung-Ang University have developed a low-cost catalyst for green hydrogen production through proton exchange membrane water electrolysis. The new catalyst, SA Zn-RuO2, has improved stability and reactivity compared to commercial RuO2, with reduced energy consumption and increased durability.
Scientists at Kyushu University use machine learning to identify promising green energy materials, accelerating the search for hydrogen fuel cell efficiency and expanding material discovery capabilities. Two new candidate materials with unique crystal structures have been successfully synthesized.
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.
Researchers have developed a new catalyst that exceeds 30% yield for the production of ethylene through oxidative coupling of methane, a more sustainable and economically viable method. The core-shell Li2CO3-coated mixed rare earth oxides catalyst enables sequential oxygen switching, replenishing its ability to provide oxygen for the r...
A team of researchers has developed a new process to transform coal into high-purity materials ideal for making ultra-thin electronics. These devices can operate faster and consume less energy than current state-of-the-art technologies.
Researchers at UChicago find a way to use electricity to boost chemical reactions, improving yields and enabling sustainable synthesis. The study uses electrochemistry to control molecular interactions, offering a unique design lever for greener chemistry.
Fluke 87V Industrial Digital Multimeter
Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.
Researchers have developed a solid electrolyte that allows for efficient hydride ion conduction at room temperature, enabling the creation of safer, more efficient hydrogen-based batteries and fuel cells. This breakthrough provides material design guidelines for the development of next-generation energy storage solutions.
A new NSF-supported collaboration aims to improve liquid organic hydrogen carriers and use AI to identify novel approaches for a global renewable energy supply chain. The team is developing a new class of molecules, chemistries, and chemical processes to better store and transport green energy across the globe.
Researchers at Tokyo Institute of Technology have discovered a new type of perovskite oxide with remarkable dual-ion conductivity, promising to revolutionize the development of solid-oxide fuel cells and proton ceramic fuel cells. The material's unique ion migration mechanisms, involving the formation of dimers and efficient proton mig...
Kestrel 3000 Pocket Weather Meter
Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.
A team of researchers has developed an atom-predicting model similar to the GPT models that support applications like ChatGPT. The new model focuses on small organic molecules with relevance to energy storage and conversion applications.
Researchers at Tokyo University of Science developed nanostructured hard carbon electrodes using inorganic zinc-based compounds, which deliver unprecedented performance and significantly increase the capacity of sodium- and potassium-ion batteries. The new electrodes improve energy density by 1.6 times compared to existing technologies.
The researchers propose a hybrid organic–inorganic gas sensor design that enhances gas sensing performance while maintaining sensing speed. The proposed design outperforms conventional sensors in terms of chemical sensitivity to NO2, showcasing impressive durability and higher potential for long-term installation.
Apple MacBook Pro 14-inch (M4 Pro)
Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.
Researchers discovered that a new type of electrolyte uses complex nanostructures similar to those in soap to improve battery life. This understanding could lead to the development of lithium batteries that store more energy and last longer.
The Beckman Institute's new Electrolab robot automates electrochemical experiments and data analysis, reducing manual effort and time for researchers. The instrument can explore alternative power sources and analyze chemical reactions to combat climate change.
The Beckman Institute's DROPLETS project uses microdroplets to catalyze electrochemical reactions, producing clean hydrogen and sequestering carbon dioxide. The project aims to lay out a foundation for a sustainable clean energy future.
Researchers at Ruhr-University Bochum developed a method to increase oxygen stability of [FeFe] hydrogenase enzyme using site-directed mutagenesis, electrochemistry, X-ray crystallography and molecular dynamics simulations. Blockages in dynamic water channels near the H-cluster were found to improve oxygen resistance.
Researchers have developed a self-supported electrode that enhances electrochemical activity and reaction surface area to improve hydrogen gas production efficiency via electrolysis. The new material, composed of tungsten disulfide and reduced graphene oxide, outperforms platinum benchmark in acidic and basic conditions.
Apple iPad Pro 11-inch (M4)
Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.
Researchers have created a fire-inhibiting, nonflammable gel polymer electrolyte for lithium-ion batteries, increasing ion conductivity by 33% and improving life characteristics by 110%. The electrolyte prevents radical chain reactions during combustion, effectively inhibiting battery fires.
Researchers have developed a high-performance magnesium-air primary battery using nitrogen-doped nanoporous graphene as air electrodes, offering superior performance to platinum cathode-based batteries. The battery's porous electrode structure facilitates air transport and prevents rapid corrosion of the Mg electrode.
Recent research highlights the excellent electrochemical performance of critical 3D printing materials in rechargeable batteries. The study outlines the typical characteristics of major 3D printing methods used in fabricating electrochemical energy storage devices and discusses crucial materials for 3D printing of rechargeable batterie...
Rigol DP832 Triple-Output Bench Power Supply
Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.
Scientists discovered that solid electrolyte interphase (SEI) layer behaves like a semiconductor, causing electron leakage and leading to inferior battery performance. Minimizing organic components in SEI enables longer-lasting batteries.
Researchers developed a novel solid-state mechanochemical reaction to synthesize FCMs from PTFE and graphite, producing materials with enhanced storage capacity and electrochemical stability. The new method bypasses toxic reagents and offers a safer alternative for practical applications.
Researchers find that gold nanoclusters can efficiently catalyze the hydrogen evolution reaction, producing hydrogen through water electrolysis. The precise structure of gold nanoclusters enables uniform size, composition, and chemical environment, promoting efficient electrochemical reactions.
A team of researchers has made breakthroughs in harnessing low-grade heat sources for efficient energy conversion. They developed a highly efficient Thermally Regenerative Electrochemical Cycle (TREC) system that converts small temperature differences into usable energy.
Creality K1 Max 3D Printer
Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.
A research team at City University of Hong Kong has developed a highly efficient electrocatalyst that enhances hydrogen generation through electrochemical water splitting. The catalyst, composed of transition-metal dichalcogenide nanosheets with unconventional crystal phases, exhibits superior activity and stability in acidic media.
A team of researchers from Waseda University successfully generated electricity directly from methylcyclohexane using solid oxide fuel cells, with a production ratio of toluene to benzene at 94:6. The process generates electricity without dehydrogenation facilities and uses less energy than conventional methods.
Scientists create a design that enables simultaneous presentation of photothermal, thermal conductive, and superhydrophobic properties, achieving record-high defrosting efficacy. The innovative assembly enhances de-icing and defrosting efficiency, reducing overall defrosting durations by 2-3 times.
A paper published in Nature Energy reveals a promising breakthrough in green energy: an electrolyzer device capable of converting carbon dioxide into propane. The device, developed by Illinois Tech assistant professor Mohammad Asadi, is scalable and economically viable.
Researchers at Gwangju Institute of Science and Technology have developed a novel mesoporous tantalum oxide-supported iridium nanostructure catalyst for efficient proton exchange membrane water electrolysis. The catalyst exhibits improved oxygen evolution reaction activity, stability, and cost-effectiveness.
Apple Watch Series 11 (GPS, 46mm)
Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.
Researchers have demonstrated a method to power water remediation using renewable energy sources, including solar power. Through electrochemical separation and redox reactions, they successfully removed arsenate from wastewater.
Rice University engineers have created a device that converts sunlight into hydrogen with unprecedented efficiency, opening up new possibilities for clean energy and sustainable fuel production. The innovative technology uses halide perovskite semiconductors and electrocatalysts in a single, durable device.
Carbon-based materials have been found to be more reactive with alcohol-functionalized oxygens, challenging traditional catalysis chemistry. The researchers' study showed a correlation between the amount and type of oxygen present and performance, including the long-range effects of aromatic rings.
The team created a thermocell using a hydrogel that reacted to temperature changes, converting latent heat into electricity. This breakthrough supports the idea that various materials can be used for thermoelectric conversion, potentially reducing reliance on other energy sources and improving cooling systems.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
A new flow battery design has achieved a record-breaking 60% increase in peak power using a dissolved simple sugar called β-cyclodextrin, which boosts battery capacity and longevity. The battery maintained its energy storage and release capabilities for over a year without significant loss of activity.
Researchers developed a new anode material that increases lithium-ion battery storage capacity by 1.5 times, allowing for fast charging in as little as six minutes. The innovation uses electron spin to enhance storage capacity and ferromagnetic properties.
A team of researchers from China and the UK has developed new ways to optimise the production of solar fuels by creating novel photocatalysts. These photocatalysts, such as titanium dioxide with boron nitride, can absorb more wavelengths of light and produce more hydrogen compared to traditional methods.
Researchers have developed a method to encapsulate polyoxometalate molecules within carbon nanotubes, enhancing the electrochemical energy storage of materials. The study found that these hybrids exhibit improved electrochemical properties due to reduced aggregation and increased electron transfer.
Sony Alpha a7 IV (Body Only)
Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.
Researchers at Leibniz-HKI have confirmed experimentally that bacteria use electrons from hydrogen to produce organic compounds. This breakthrough could make microbial electrosynthesis (MES) a commercially viable technology, producing ethanol and other fuels while storing excess electricity. The study optimized the process for high yie...
Researchers investigate Metal-Organic Frameworks (MOFs) and MXene, a two-dimensional material, for enhanced electrochemical properties. The hybrid materials show improved performance in various energy storage and conversion applications.
Researchers are working on a new concept for lithium-air batteries that could lead to significant improvements in energy storage capacity. A collaborative project in Germany aims to test new materials and components to enhance the stability of these battery cells. The goal is to overcome technical challenges such as unstable electrolyt...
Researchers designed a heterostructured interface for Zn batteries with ultrahigh areal capacity and energy density. The new design stabilizes electrodeposition and dissolution of Zn at high capacities, enabling excellent cycling stability.
Chung-Ang University researchers develop a novel flexible supercapacitor platform with vertically integrated gold electrodes in a single sheet of paper. The design shows low electrical resistance, high foldability, and good mechanical strength, making it suitable for wearable devices.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
Carolina researchers have engineered silicon nanowires that can convert sunlight into electricity, splitting water into oxygen and hydrogen gas. This innovative design enables the production of a greener alternative to fossil fuels, making it more competitive with traditional energy sources.
Researchers at Berkeley Lab have developed a new technique that captures real-time movies of copper nanoparticles as they convert carbon dioxide into renewable fuels and chemicals. The study reveals that metallic copper nanograins serve as active sites for CO2 reduction, paving the way for advanced solar fuel technology.