Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

New milestone for lithium metal batteries

Researchers at Pohang University of Science & Technology developed a hybrid porous structure using polyvinyl alcohol, enabling uniform lithium electrodeposition. The new design facilitated the transport of lithium ions, reducing 'dead Li' areas and internal short circuits, resulting in high stability after 200 charge-discharge cycles.

Hide and seek between atoms. Find the dopant!

The team developed a deep learning AI technique to quantitatively analyze cation mixing using atomic structure images. This approach revealed that introducing metal dopants like aluminum, titanium, and zirconium into the transition metal layer fortified bonds between nickel and oxygen atoms, curbing cation mixing.

Manganese sprinkled with iridium: a quantum leap in green hydrogen production

Researchers at RIKEN have developed a new catalyst that reduces the amount of iridium required for hydrogen production, achieving 82% efficiency and sustaining production for over 4 months. The breakthrough could revolutionize ecologically friendly hydrogen production and pave the way for a carbon-neutral energy economy.

Disorder improves battery life

A team of international researchers, led by TU Delft, found that introducing chemical short-range disorder into layered oxide materials used as cathode materials can significantly improve the stability and performance of lithium-ion batteries. This improvement results in a longer cycle life and shorter charging times for well-establish...

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Longer-lasting and more sustainable green hydrogen production

Researchers at RIKEN have improved the stability of a green hydrogen production process by using a custom-made catalyst, increasing its lifetime by almost 4,000 times. The breakthrough uses earth-abundant materials, making it more sustainable and potentially cost-effective for widespread industrial use.

New all-liquid iron flow battery for grid energy storage

Researchers at PNNL have developed a safe, economical, and water-based flow battery made with commercially available industrial quantities of nitrogenous triphosphonate. The new design exhibits remarkable cycling stability over 1,000 charging cycles, outperforming previous iron-based batteries.

Decommissioned offshore structures could offer only limited ecological benefits

A new study published in Nature Sustainability suggests that decommissioned offshore structures may only provide limited long-term ecological benefits. The research analyzed over 530 scientific studies on the effects of marine artificial structures and found no conclusive evidence to support their use as artificial reefs.

DJI Air 3 (RC-N2)

DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.

Sodium-ion batteries: How doping works

Scientists found that doping with Scandium reduces structural changes but doesn't improve stability. Magnesium doping suppresses oxygen redox reaction, which is unexpected as magnesium triggers it in other layered manganese oxides.

Greenhouse gas repurposed in University of Auckland experiments

Scientists have developed a method to convert waste carbon dioxide into formic acid, a colorless and pungent liquid with potential as a transportation fuel and petrochemical industry enhancer. The new method efficiently converted CO2 for over 5,000 hours, suggesting cost-effective scalability.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

Machine learning guides carbon nanotechnology

Researchers at Tohoku University and Shanghai Jiao Tong University developed a machine learning method to predict the growth of carbon nanostructures on metal surfaces. The approach combines theoretical models with data from chemistry experiments to control the dynamics of material growth, leading to improved quality and efficiency.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Engineered battery chemistry for fast charging capabilities

Researchers successfully improved lithium metal battery charging rates by adding a cesium nitrate compound, while maintaining long cycle life. The new findings challenge conventional beliefs about effective interphase components and contribute to the development of high-energy density batteries.

Machine learning method speeds up discovery of green energy materials

Scientists at Kyushu University use machine learning to identify promising green energy materials, accelerating the search for hydrogen fuel cell efficiency and expanding material discovery capabilities. Two new candidate materials with unique crystal structures have been successfully synthesized.

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.

Better microelectronics from coal

A team of researchers has developed a new process to transform coal into high-purity materials ideal for making ultra-thin electronics. These devices can operate faster and consume less energy than current state-of-the-art technologies.

Fluke 87V Industrial Digital Multimeter

Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.

New material allows for better hydrogen-based batteries and fuel cells

Researchers have developed a solid electrolyte that allows for efficient hydride ion conduction at room temperature, enabling the creation of safer, more efficient hydrogen-based batteries and fuel cells. This breakthrough provides material design guidelines for the development of next-generation energy storage solutions.

Unlocking hydrogen’s potential for renewable energy storage, transport

A new NSF-supported collaboration aims to improve liquid organic hydrogen carriers and use AI to identify novel approaches for a global renewable energy supply chain. The team is developing a new class of molecules, chemistries, and chemical processes to better store and transport green energy across the globe.

Shedding light on unique conduction mechanisms in a new type of perovskite oxide

Researchers at Tokyo Institute of Technology have discovered a new type of perovskite oxide with remarkable dual-ion conductivity, promising to revolutionize the development of solid-oxide fuel cells and proton ceramic fuel cells. The material's unique ion migration mechanisms, involving the formation of dimers and efficient proton mig...

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

Template for success: Shaping hard carbon electrodes for next-generation batteries

Researchers at Tokyo University of Science developed nanostructured hard carbon electrodes using inorganic zinc-based compounds, which deliver unprecedented performance and significantly increase the capacity of sodium- and potassium-ion batteries. The new electrodes improve energy density by 1.6 times compared to existing technologies.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

How to protect biocatalysts from oxygen

Researchers at Ruhr-University Bochum developed a method to increase oxygen stability of [FeFe] hydrogenase enzyme using site-directed mutagenesis, electrochemistry, X-ray crystallography and molecular dynamics simulations. Blockages in dynamic water channels near the H-cluster were found to improve oxygen resistance.

Apple iPad Pro 11-inch (M4)

Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.

The past and present of 3D-printed critical materials for rechargeable batteries

Recent research highlights the excellent electrochemical performance of critical 3D printing materials in rechargeable batteries. The study outlines the typical characteristics of major 3D printing methods used in fabricating electrochemical energy storage devices and discusses crucial materials for 3D printing of rechargeable batterie...

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

A new twist on rechargeable battery performance

Scientists discovered that solid electrolyte interphase (SEI) layer behaves like a semiconductor, causing electron leakage and leading to inferior battery performance. Minimizing organic components in SEI enables longer-lasting batteries.

Creality K1 Max 3D Printer

Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.

Direct power generation from methylcyclohexane using solid oxide fuel cells

A team of researchers from Waseda University successfully generated electricity directly from methylcyclohexane using solid oxide fuel cells, with a production ratio of toluene to benzene at 94:6. The process generates electricity without dehydrogenation facilities and uses less energy than conventional methods.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.

Device makes hydrogen from sunlight with record efficiency

Rice University engineers have created a device that converts sunlight into hydrogen with unprecedented efficiency, opening up new possibilities for clean energy and sustainable fuel production. The innovative technology uses halide perovskite semiconductors and electrocatalysts in a single, durable device.

Turning waste heat into energy

The team created a thermocell using a hydrogel that reacted to temperature changes, converting latent heat into electricity. This breakthrough supports the idea that various materials can be used for thermoelectric conversion, potentially reducing reliance on other energy sources and improving cooling systems.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.

Next-generation flow battery design sets records

A new flow battery design has achieved a record-breaking 60% increase in peak power using a dissolved simple sugar called β-cyclodextrin, which boosts battery capacity and longevity. The battery maintained its energy storage and release capabilities for over a year without significant loss of activity.

New recipes for better solar fuel production

A team of researchers from China and the UK has developed new ways to optimise the production of solar fuels by creating novel photocatalysts. These photocatalysts, such as titanium dioxide with boron nitride, can absorb more wavelengths of light and produce more hydrogen compared to traditional methods.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

Microbes powered by electricity

Researchers at Leibniz-HKI have confirmed experimentally that bacteria use electrons from hydrogen to produce organic compounds. This breakthrough could make microbial electrosynthesis (MES) a commercially viable technology, producing ethanol and other fuels while storing excess electricity. The study optimized the process for high yie...

New concept for lithium-air batteries

Researchers are working on a new concept for lithium-air batteries that could lead to significant improvements in energy storage capacity. A collaborative project in Germany aims to test new materials and components to enhance the stability of these battery cells. The goal is to overcome technical challenges such as unstable electrolyt...

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

How a record-breaking copper catalyst converts CO2 into liquid fuels

Researchers at Berkeley Lab have developed a new technique that captures real-time movies of copper nanoparticles as they convert carbon dioxide into renewable fuels and chemicals. The study reveals that metallic copper nanograins serve as active sites for CO2 reduction, paving the way for advanced solar fuel technology.