Researchers have developed a chemical-free method to upcycle waste chitin into high-performance porous carbons, which can efficiently capture and release hydrocarbons. The materials' pore structure can be precisely tuned through steam activation time, leading to improved adsorption and desorption performance.
A team from Donghua University has developed a new molecular design that improves the performance of photothermally healable elastomers. The resulting material, PIB5Cu, achieves all-round upgrades in toughness, tensile strength, photothermal conversion efficiency and healing efficiency.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
Researchers created eco-friendly, high-performance gas sensors with blended polymer films combining poly(3-hexylthiophene) and poly(butylene succinate). The sensors demonstrated stable performance and higher sensitivity to nitrogen dioxide and other gases.
Researchers at Worcester Polytechnic Institute have developed a new technology for plastic recycling that uses aqueous chemi-mechanical recycling to blend, decolorize, and purify mixed polyolefins. This approach reduces energy consumption and eliminates toxic chemicals compared to existing methods.
A team of researchers from Chiba University discovered the structural evolution of poloxamer mixtures at different temperatures, enabling customized gelation behavior. Their findings support precise design of sustained-release formulations for localized therapies, enhancing drug retention and minimizing side effects.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
A new study from Nagoya University in Japan has found that petrolatum-based eye ointments can cause MicroShunt glaucoma implants to swell and potentially rupture. The study suggests that clinicians should avoid using these ointments on patients with the implant, particularly when it is exposed outside the conjunctiva.
Researchers have combined molecular imprinting technology with biochar to create materials that can selectively target specific molecules, achieving high adsorption capacity and selectivity. These smart sorbents show promise for efficient pollution control in complex mixtures and at low concentrations.
A team from Huazhong University of Science and Technology has developed a novel material that significantly improves piezoelectric responsiveness and mass-producesibility. The new polymer, created using a simple process, overcomes the challenges of achieving highly responsive materials for wearable health trackers and energy harvesters.
Researchers have developed a spray-on polymer coating that can be sprayed directly onto plant leaves to protect against harmful bacterial infections and survive drought. The coating works by disrupting bacterial cell membranes, reducing water loss and inducing molecular-level stress response mechanisms.
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.
Researchers at Empa's Mechanics of Materials and Nanostructures laboratory are working to improve the insulation material used in satellites and space probes. They have developed a new intermediate layer that makes the material more elastic and resistant to cracks and flaking, enabling better superinsulation for future satellites.
Microplastics leak a complex mixture of dissolved organic chemicals that evolve over time, especially under sunlight. The study provides the most detailed molecular-level view to date of how this microplastic-derived dissolved organic matter forms and transforms in natural waters.
Researchers developed a novel bioelectronic material that transforms from a rigid film to a soft, tissue-like interface upon hydration, enabling seamless integration with living tissues. The device, called THIN, has been shown to record biological signals with high fidelity and stability in animal experiments.
DJI Air 3 (RC-N2)
DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.
Researchers have developed a new approach to overcome limitations in single-atom catalysts by creating one-dimensional organic polymers capable of selectively binding metal atoms. The platform marks a major advance in single atom catalysis, enabling stronger gas binding compared to other structures.
Researchers have discovered a zero-cost solution to reverse desertification by using food waste nanocellulose extracted from pineapple peels. The material cuts water leakage by 90% and triples phosphate retention, offering a more sustainable alternative to expensive hydrogels.
Researchers at Chalmers University of Technology have developed a new material that uses metal-organic frameworks to physically injure and kill bacteria, preventing biofilm formation without antibiotics or toxic metals. This innovation eliminates the risk of antibiotic resistance and has potential applications in various industries.
A new study shows that lithium can be recovered from battery waste using an electrochemically driven recovery process, which demonstrates economic viability with the potential to simplify operations. The method has been tested on commonly used types of lithium-containing batteries and produces recovered lithium at a cost comparable to ...
Researchers in Japan have developed a supramolecular polymer system that can adaptively transform into different dimensional states depending on the intensity of light applied, revealing mechanisms behind these dynamic transformations using high-speed atomic force microscopy.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
Researchers at MIT have developed a nearly impermeable polymer film that could protect solar panels and infrastructure from corrosion. The film, made using a solution-phase polymerization reaction, completely repels nitrogen and other gases, outperforming existing polymers.
Liheng Cai has challenged long-accepted rules of polymer physics, offering new theories to explain the behavior of associative polymers and solving a conundrum that stumped scientists for nearly 200 years. His work has led to breakthroughs in designing better materials for healthcare and sustainability.
Researchers developed a nanoengineered polymer coating that reflects sunlight and radiates heat, capturing atmospheric water vapour to create a sustainable source of fresh water. The technology can be integrated into paint-like materials for large-scale use, complementing existing systems and addressing global challenges.
Researchers use ultraviolet light to create angstrom-sized channels in polymer membranes, allowing for precise separation of ions and small molecules. The technique enables sieving of monovalent ions from multivalent ions, with adjustable channel sizes.
Lehigh University researchers are collaborating with Dow on a three-year NSF-funded project to understand the chemistry behind full degradation of these polymers. The goal is to develop strategies for selective mixing of microbial communities to target different parts of the polymer for complete breakdown.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
A new composite material made from a recyclable polymer infused with microscopic droplets of liquid metal alloy can be broken down through a simple chemical process, freeing the metal for reuse. The material also has self-healing properties, allowing it to be cut, rearranged, and bonded back together using only heat and pressure.
A new method to recycle PA-66, a type of polymer found in fishing nets and automotive parts, has been developed. The process involves introducing melamine into melted waste, resulting in a nylon material with improved properties that can be reprocessed up to three times.
Scientists at the University of Groningen have developed a polymer that changes its shape with temperature and can break down into smaller molecules. The innovative material, inspired by the Shanghai Tower's unique design, has potential applications in biomaterials and may be recyclable into its chemical building blocks.
A new AI-based system helps researchers design polymers with tailored electronic properties for next-generation bioelectronics. By processing a wide range of experiments, the system reveals the importance of local polymer order and dopant-polymer separation in controlling electronic properties.
An AI-driven irrigation management system developed by Texas A&M University students uses soil sensors, crop data, and weather forecasts to optimize watering. The system conserves water, reduces costs, and increases crop yields, addressing global issues of water scarcity and inequity.
Apple AirPods Pro (2nd Generation, USB-C)
Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.
Researchers at Waseda University have developed a new class of polymers with ultralow dielectric loss, enabling high-speed telecommunications. The polymers, specifically poly(2,6-dimethyl-1,4-phenylene sulfide) (PMPS), achieved a low dielectric constant and dissipation factor, making them suitable for future 5G and beyond networks.
Researchers convert bio-tar into bio-carbon, a novel material with applications in water purification, clean energy storage, and industrial chemical reactions. Bio-carbon has higher carbon content and unique structural features, making it suitable for advanced uses.
Researchers investigated how natural microfibers and synthetic materials degrade under simulated sunlight in freshwater and seawater. The study found significant differences in degradation rates between the two materials, with implications for aquatic ecosystems.
Rigol DP832 Triple-Output Bench Power Supply
Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.
A team of researchers has developed a new method to produce sturdy and reusable bioplastics from domestic raw materials, reducing reliance on petroleum-based chemicals. The bioplastics, known as polyhydroxyalkanoates (PHAs), have similar levels of toughness and malleability to traditional plastics, but are infinitely recyclable.
HIT researchers created multi-material, multi-responsive, multi-shape shape memory polymer (SMP) gradient metamaterials with tunable properties. These smart materials can adapt to different tasks without extra tools or infrastructure, enabling applications such as secure information storage and soft robotic systems.
Scientists at La Trobe University have developed a powerful new material that can conduct electricity as well as metals, making it ideal for wearable technologies like medical devices. The new technique uses hyaluronic acid to create a thin, durable film that is flexible and scalable.
Scientists have created the highest-performing underwater adhesive hydrogel technology, exceeding 1 MPa in adhesive strength, using data mining and machine learning. The gels can withstand repeated ocean tides and wave impacts, making them suitable for biomedical engineering and deep-sea exploration applications.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
Researchers used machine learning to identify iron-containing compounds that can be added to polymers, making them more resistant to tearing. The study could lead to more durable plastics and reduce plastic waste.
Scientists create a new class of mechanochromic mechanophores that can detect and respond to mechanical stress in polymeric materials through fluorescence. The developed molecule exhibits excellent stress-sensing with high durability, offering a powerful tool for real-time monitoring of mechanical damage.
Researchers at Carnegie Mellon University developed a low-cost, long-lasting indoor formaldehyde sensor with a unique polymer coating. The coating extends the sensor's half-life by 200% and enables it to regenerate when performance degrades.
Researchers developed a controlled 'living' click polymerization system to achieve well-defined polymers with narrow dispersity, enabling bidirectional synthesis of ABA-type block copolymers. The method leverages copper-catalyzed azide–alkyne cycloaddition and initiators to selectively drive monomer addition in a controlled manner.
GoPro HERO13 Black
GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.
Scientists at Rice University developed a scalable approach to engineer bacterial cellulose into high-strength, multifunctional materials. The dynamic biosynthesis technique aligns bacterial cellulose fibers in real-time, resulting in robust biopolymer sheets with exceptional mechanical properties.
Dr. Phil Costanzo, a Cal Poly chemistry professor, has been recognized with the Jack Flack Norris Award for his contributions to chemistry education. He co-founded the Macromolecular Alliance for Community Resources & Outreach (MACRO), a joint service committee that provides freely accessible educational resources for polymer chemists.
A new study by Colorado State University outlines a path to creating advanced, recyclable plastics using natural poly(3-hydroxybutyrate) (P3HB). The breakthrough method involves stereodivergent catalysis, which enables the production of enantiopure PHAs with improved properties for various applications.
Researchers at the University of California San Diego have developed a new method for creating engineered living materials, enabling the use of a wider variety of polymers that were previously toxic to live cells. This breakthrough allows for the creation of sustainable materials powered by sunlight and living microbes.
The study highlights the challenges of commercializing renewable polymers, but also emphasizes the potential of chemical modification to improve their properties for clinical use. The research aims to provide a comprehensive overview of these sustainable materials in biomedical practice.
Kestrel 3000 Pocket Weather Meter
Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.
A new e-textile platform developed by KAIST's research team combines 3D printing technology with advanced materials engineering to create customized training models for individual combatants. The platform uses flexible and highly durable sensors and electrodes printed directly onto textile substrates, enabling precise movement and huma...
Researchers at DTU developed a new electronic material that behaves like human skin, offering self-healing and adaptive properties. The material can stretch up to six times its original length, regulate heat, and detect environmental factors, making it suitable for wearable devices, soft robotics, and healthcare applications.
Scientists at Xi'an Jiaotong-Liverpool University developed a new nanoparticle capable of carrying high doses of chemotherapy drugs while staying stable for extended periods. This innovation could make treatments more effective and reduce side effects.
Apple MacBook Pro 14-inch (M4 Pro)
Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.
Bioengineering researchers at Harvard John A. Paulson School of Engineering and Applied Sciences developed a soft, thin, stretchable bioelectronic device that can be implanted into a tadpole embryo's neural plate, recording electrical activity from single brain cells with millisecond precision.
A team from Institute of Science Tokyo has developed a postfunctionalization technique allowing for the incorporation of phosphonate esters under visible light conditions. This breakthrough paves the way for a broader range of polymer modifications, enabling the creation of novel polymer architectures with unique properties.
Scientists from Institute of Science Tokyo successfully solubilize porous aromatic polymers (PAPs) in water using aromatic micelles, forming giant polycavity materials with high incorporation functions. The method enables the preparation of rare multi-component materials with potential applications in advanced functional materials.
Researchers at University of Michigan have discovered a rule-breaking silicone that can conduct electricity, upending assumptions about the material class. The semiconducting properties of the silicone copolymer enable its spectrum of colors, with longer chain lengths producing red tones and shorter chains emitting blue light.
Sony Alpha a7 IV (Body Only)
Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.
Materials researchers at Harvard have created a way to produce natural rubber that retains its stretchiness and durability while improving its ability to resist cracking. The new material is four times better at resisting slow crack growth during repeated stretching and 10 times tougher overall.
Researchers have discovered a new enzyme called CelOCE that can cleave cellulose using an unprecedented mechanism. This discovery has the potential to significantly increase the production of second-generation ethanol from agro-industrial waste, enabling the large-scale production of biofuels.
Researchers have developed a technique for in vivo 3D printing of polymers using sound localization, which can be used for drug delivery, tissue repair, and internal wound sealing. The new method, called deep tissue in vivo sound printing (DISP), has been successfully tested in mice and shows promising results.
Researchers at Texas A&M University have developed a dynamic material that can self-heal after puncturing, changing from solid to liquid and back, allowing it to absorb kinetic energy and leave tiny holes. The polymer's unique properties make it suitable for protecting space vehicles and military equipment.
Apple Watch Series 11 (GPS, 46mm)
Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.
A new study by Columbia University researchers reveals that 75-80% of plastics, known as semicrystalline polymers, break down into hazardous micro- and nanoscopic fragments. These fragments can persist in the environment for centuries and cause significant damage to living things.
A team of researchers led by UMass Amherst discovered that imperfect polymer fillers can enhance thermal conductivity, challenging conventional wisdom. Polymers with defective fillers performed 160% better than those with perfect fillers in conducting heat.
A team of scientists discovered a method to produce a stable and conductive bioelectric material without the need for a chemical crosslinker. The new process uses high heat to stabilize the material, producing devices with three times higher electrical conductivity and more consistent stability.
Researchers at the University of Gothenburg developed a bicycle helmet with improved shock-absorbing material that utilises auxetic metastructures. The new helmet design provides better protection against head injuries, is lighter, and can be customised to individual head shapes using 3D printing.
Researchers at Tohoku University developed a new synthesis method for highly pure porous organic polymers (POPs), eliminating residual impurities and achieving high porosity. The obtained POPs exhibited improved CO2 adsorption capacity, proton conductivity, and unique gas adsorption behavior.
Nikon Monarch 5 8x42 Binoculars
Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.
Researchers found that polymers used as flame retardants can break down into dozens of smaller molecules, causing mitochondrial dysfunction and developmental harm. The study also detected these pollutants in soil, air, and dust near electronic waste recycling facilities.