Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Two technical breakthroughs make high-quality 2D materials possible

A team of researchers has made two technical breakthroughs to grow high-quality 2D materials, overcoming challenges such as securing single crystallinity and preventing irregular thickness. Their method enables the growth of single-domain heterojunction TMDs at wafer scale, paving the way for next-generation electronics.

Optical coating approach prevents fogging and unwanted reflections

A new optical coating system combines antifogging and antireflective properties, enhancing the performance of lidar systems and cameras. The technology, developed by Fraunhofer Institute for Applied Optics and Precision Engineering, has been tested in laboratory tests and has shown promising results.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Nanopore-based sensing device explores neurodegenerative diseases

A new nanopore-based sensing device explores the aggregation of tau and tubulin proteins in neurodegenerative diseases such as Alzheimer's and Parkinson's. The device provides volume information about protein molecules and their states at the single-molecule level, offering insights into protein binding and aggregation.

Laser drills elongated and crack-free micro-holes in glass

Researchers at CELIA have developed a laser drilling method that creates elongated, crack-free micro-holes in glass. This breakthrough allows for high-aspect ratio holes with smooth inner walls, enabling new applications in microelectronics.

At the edge of graphene-based electronics

Georgia Tech researchers developed a new nanoelectronics platform based on graphene, enabling smaller devices, higher speeds, and less heat. The platform may lead to the discovery of a new quasiparticle, potentially exploiting the elusive Majorana fermion.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Synthesis of a silicon-integrated organic framework film

A research team at NIMS successfully synthesized a two-dimensional silicon-integrated covalent organic framework film on a metal surface. The technique may be applied to develop new materials in a bottom-up manner, with potential applications in battery materials and catalysts.

Faster and more efficient computer chips thanks to germanium

Researchers at TU Wien have developed a new method for creating high-quality contacts between metal and semiconductor materials, enabling faster and more efficient computer chips. The technology uses crystalline aluminium and a sophisticated silicon-germanium layer system to overcome the problem of oxygen contamination.

Silicon photonic MEMS take a step forward

Researchers have demonstrated a power-efficient component for demultiplexing operation using silicon photonic MEMS, enabling efficient wavelength demultiplexing for fiber-optic communications. The compact footprint of the add-drop filter allows fast operation compared to established MEMS products.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

Shining new light on solar cell development

Researchers at Australian National University have developed a new way to boost the performance of silicon photovoltaic cells. By adding passivating contacts, they significantly reduce electrical losses and increase productivity.

Breakthrough: The world's smallest photon in a dielectric material

A research team from DTU has successfully designed and built a structure that concentrates light in a volume 12 times below the diffraction limit, paving the way for revolutionary new technologies. The breakthrough could lead to more sustainable chip architectures that use less energy.

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

Building with nanoparticles, from the bottom up

MIT researchers have developed a new approach to assemble nanoscale devices from the bottom up, using precise forces to arrange particles and transfer them to surfaces. This technique enables the formation of high-resolution, nanoscale features integrated with nanoparticles, boosting device performance.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

Full control of a six-qubit quantum processor in silicon

The QuTech team engineered a record number of six silicon-based spin qubits in a fully interoperable array, achieving low error-rates through new chip design and methods. This advances scalable quantum computers based on silicon, contributing to the development of fault-tolerant quantum computing.

Silicon nanopillars for quantum communication

Researchers created silicon nanopillars using MacEtch, a wet etching technique that generates light particles at the right wavelength to proliferate in optical fibers. This breakthrough enables practical quantum communication via optical fibers.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

Nanodisks should not be taken lightly

A novel light-manipulating technology using nanodisk periodic structures has been developed by an international team, including Kyoto University. By controlling bound states in the continuum, researchers can systematically control light distribution states and manipulate near-infrared light within a nanodisk.

Silicon image sensor that computes

Researchers developed a silicon photodiode array for in-sensor processing, allowing for real-time image filtering and extraction of relevant visual information. The technology has potential applications in machine vision, bio-inspired systems, and intelligent imaging devices.

Researchers demonstrate error correction in a silicon qubit system

Researchers at RIKEN have achieved error correction in a three-qubit silicon-based system, a major step toward large-scale quantum computing. This accomplishment demonstrates control of one of the largest qubit systems in silicon, providing a prototype for quantum error correction.

A reflection on the real world

KAUST researchers created a more efficient solar-cell module by redesigning its optical design, reducing power conversion efficiency loss in real-world applications. The new module achieved an efficiency increase from 25.7% to 26.2% due to refractive-index engineering.

Davis Instruments Vantage Pro2 Weather Station

Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.

Amping up battery performance with black glasses grafted on micron silicon

Researchers at Japan Advanced Institute of Science and Technology have developed a novel anode material consisting of black glasses grafted silicon microparticles, which shows great promise in enhancing lithium-ion battery performance and energy storage. The material exhibits high lithium diffusion ability, reduced internal resistance,...

Chip-scale metamicroscope for high-performance imaging

A newly developed polarizer-embedded metalens microscope system achieves high-quality, wide-field imaging with a large depth-of-field, significantly expanding human eyesight to the microworld. The chip-scale device offers a thousand-fold reduction in volume and weight compared to traditional microscopes.

One more slice to drive the solar stack

Inserting magnesium fluoride between perovskite and electron-transport layers reduces charge recombination and enhances performance, leading to a 50 millivolt increase in open-current voltage and a stabilized power conversion efficiency of 29.3 percent.

The best semiconductor of them all?

Cubic boron arsenide overcomes silicon's limitations, providing high electron and hole mobility and excellent thermal conductivity. The material has been shown to have a significant potential in various applications where its unique properties would make a difference.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

X-ray light catchers for space just got a whole lot lighter

A team of scientists from Tokyo Metropolitan University created unprecedentedly lightweight optics for X-ray space telescopes by employing Micro Electro-Mechanical System (MEMS) technology. By refining the patterning and annealing process, they achieved ultra-sharp features that rival existing telescopes in performance while significan...

White iron rust material provides safe UV protection

Researchers developed an iron oxide-based ultraviolet-absorbing powder material, which can neutralize UV radiation and is safer than titanium dioxide. The material was found to have comparable performance and stability to TiO2 materials currently used in sunscreens.

GoPro HERO13 Black

GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.

Free-space light coupling using curved micromirrors

The study compares the behavior of flat (1D), cylindrical (2D) and spherical (3D) micromirrors for free-space light coupling. Silicon micromirrors were fabricated and used to experimentally validate the coupling efficiency in visible and near infrared wavelengths.

Surfaces at realistic conditions

The Replica Exchange Grand Canonical (REGC) method describes how surfaces change in contact with reactive gas phases under different temperature and pressure conditions. The approach identifies 25 thermodynamically stable surface phases and predicts stability phase diagrams for real systems.

Thin mica shows semiconducting behavior, say scientists in new study

Researchers observe a significant increase in electrical conductivity when mica is thinned down to few molecular layers, exhibiting semiconductor-like behavior. The findings suggest that thin mica flakes have the potential to be used in two-dimensional electronic devices with exceptional stability and durability.

Aranet4 Home CO2 Monitor

Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.

Dual epsilon-near-zero effect assisted broadband electro-optic modulation

Researchers developed a new spatial light modulation strategy incorporating dual epsilon-near-zero (ENZ) effects in a semiconductor-insulator-semiconductor nano-capacitor. This design enables broadband electro-optic modulation by manipulating permittivity crossover wavelengths via external voltage biasing.

Advances in lithium niobate photonics

Lithium niobate photonics has developed rapidly, enabling compact devices with high performance. Thin film lithium niobate (TFLN) structures have shown significant improvements in refractive index contrast, paving the way for more integrated photonic devices.

Sky & Telescope Pocket Sky Atlas, 2nd Edition

Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.

Solving the puzzle of 2D disorder

An interdisciplinary team of Northwestern University researchers has developed a new method to determine the fingerprint of neighboring disorder in 2D materials. This method enables a universal curve that characterizes disorder potentials, leading to improved performance in transistors and gas sensors.

Researchers discover intracellular biosilicification in prokaryotes

A team of scientists has discovered a novel magnetotactic bacterium that forms intracellular amorphous silica globules. This finding suggests a previously unobserved influence on the global silicon cycle during early Earth history, expanding our knowledge of prokaryotic biosilicification.

Sponge-like solar cells could be basis for better pacemakers

Researchers at the University of Chicago have invented a new type of porous solar cell that can power medical devices, including pacemakers. The innovative technology reduces the size of bulky batteries and eliminates the need for high temperatures or toxic gases in production.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

Complete photonic bandgap comes to silicon nitride slabs

A research group at South-Central MinZu University has achieved the largest complete photonic bandgap (CPBG) of 5.62% in a silicon nitride slab, significantly enhancing nonlinearity and enabling polarization multiplexing. The breakthrough could lead to the development of high-performance CPBG devices in SiN slabs.

Thermal insulation for quantum technologies

Scientists at HZB created sintered porous silicon-aluminum nanomaterials with reduced thermal conductivity using a novel process. The resulting materials have tiny pores, crystalline nanoparticles, and domain boundaries that suppress heat conduction.

Synthesis of two-dimensional holey graphyne

Researchers have successfully synthesized a new type of carbon allotrope called holey graphyne, which has semiconductor properties and can be used in various applications. The material was created using a bottom-up approach and consists of alternately linked benzene rings and C≡C bonds.

Researchers use light for thermomagnetic recording on silicon waveguide

Scientists have developed a new method of recording data using light on silicon waveguides, enabling non-volatile and high-performance magneto-optical memories. This breakthrough could lead to all-optical alternatives in telecommunications infrastructure and applications in optical computing.

Nikon Monarch 5 8x42 Binoculars

Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.

Fluke 87V Industrial Digital Multimeter

Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.

New polymer materials make fabricating optical interconnects easier

Researchers developed new polymer materials with adjustable refractive index, enabling easy creation of optical interconnects between photonic chips and board-level circuits. The technology has the potential to boost Internet data center efficiency by reducing power consumption and heat generation.

Energy transition: New-generation solar cells raise efficiency

Researchers at the University of Cologne and the University of Wuppertal have developed a tandem solar cell that achieves an unprecedented 24% efficiency, outperforming previous records. The innovative design combines organic and perovskite-based absorbers with an indium oxide interconnect to minimize losses.

World’s first LED lights developed from rice husks

Researchers at Hiroshima University have created the world's first silicon quantum dot (QD) LED light using waste rice husks, offering an eco-friendly alternative to toxic semiconducting materials. The new method transforms agricultural waste into high-quality LED lights with high luminescence efficiency and low environmental impact.

Apple iPad Pro 11-inch (M4)

Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.

In race to build quantum computing hardware, silicon begins to shine

Researchers at Princeton University have achieved an unprecedented level of fidelity in two-qubit silicon devices, paving the way for the use of silicon technology in quantum computing. The study's findings suggest that silicon spin qubits have advantages over other qubit types, including scalability and size limitations.