Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Enhancing solid-state phosphorescence in π-electronic molecules

Researchers at Ritsumeikan University enhance solid-state phosphorescence in organoplatinum(II) complexes by 75 times through anion binding and ion-pairing with countercations. The strategy isolates π-electronic molecules, improving luminescent properties and extending emission lifetime.

Biomineralization mechanism revealed

Living organisms produce minerals through a complex process involving pre-nucleation clusters, mobile water molecules, and dissolved hydroxide ions. The study provides a structural model for amorphous calcium carbonate and sheds light on the conductivity of ACC particles.

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

New material allows for better hydrogen-based batteries and fuel cells

Researchers have developed a solid electrolyte that allows for efficient hydride ion conduction at room temperature, enabling the creation of safer, more efficient hydrogen-based batteries and fuel cells. This breakthrough provides material design guidelines for the development of next-generation energy storage solutions.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

Materials scientist finds clue to treat deadly hereditary illness

Researchers have discovered a root cause of Barth syndrome, a deadly metabolic illness, by analyzing faulty cardiolipin molecules and their interaction with cytochrome c. The study used solid-state NMR technology to demonstrate the structural changes that lead to toxic oxidation in mitochondrial membranes.

Two conductors of a chemical reaction

Researchers have successfully observed the operating principle of promoters in a catalytic reaction in real-time. Using high-tech microscopy methods, they visualized individual La atoms' role in hydrogen oxidation. The study revealed that two surface areas of the catalyst act as pacemakers, controlled by promoter lanthanum.

A revolution in crystal structure prediction of pharmaceutical drugs

Experts have developed a reliable method to predict the free energy of crystals, addressing the challenge of understanding physical properties and environmental factors. The new approach uses high-performance computing and has been successfully applied to seven pharmaceutical companies.

A step on the way to solid-state batteries

Researchers developed a sinter-free method for efficient, low-temperature synthesis of lithium ceramic, enabling the creation of solid-state batteries with higher power density and lower production costs. This breakthrough could accelerate the transition to electric vehicles by reducing the reliance on conventional lithium-ion batteries.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Accelerating sustainable semiconductors with ‘multielement ink’

Researchers have developed a new semiconducting material called multielement ink that can be processed at low temperatures, paving the way for more sustainable semiconductor industry. The breakthrough enables faster and lower-energy production of semiconductors, which could significantly reduce carbon emissions.

Data storage of tomorrow

Researchers have developed a novel supramolecular memristor based on bistable [2]catenanes, which can achieve high-density storage and non-volatile memory capabilities. The memristors demonstrated at least 1000 erase-read-write cycles and switching times comparable to commercial inorganic memristors.

Making elbow room: Giant molecular rotors operate in solid crystal

A team at Hokkaido University has set a size record for dynamic motion in crystals, demonstrating the largest molecular rotor operational in the solid-state. The rotors consist of a central rotating molecule connected to stationary stator molecules, and can rotate at frequencies of 100–400 kHz.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.

Improving the properties of sweeteners for enhanced thermal energy storage

Scientists have created a new class of solid-state phase change materials using sugar alcohols, which can store-and-release heat more efficiently. By confining these compounds in covalent organic framework crystals, the researchers were able to suppress supercooling and retrieve thermal energy at higher temperatures.

Meta Quest 3 512GB

Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.

New design rule for high-entropy superionic solid-state conductors

Researchers from Tokyo Tech have developed a new strategy to produce solid electrolytes with enhanced lithium-ion conductivity, preserving their superionic conduction pathways. The proposed design rule enables the synthesis of high-entropy active materials for millimeter-thick battery electrodes.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

A novel, completely solid, rechargeable air battery

Researchers at Waseda University have developed a novel, completely solid, rechargeable air battery that uses a benzoquinone-based negative electrode and solid Nafion polymer electrolyte. The battery exhibits high performance and close to maximum capacity, overcoming metal-based battery limitations and liquid electrolyte safety concerns.

More complex than expected: Catalysis under the microscope

Scientists at TU Wien use microscopy techniques to observe chemical reactions on catalysts, revealing a wealth of detail that challenges previous understanding. The study shows that even simple catalytic systems are more complex than expected, with different scenarios prevailing on the micrometer scale.

Flexing crystalline structures provide path to a solid energy future

Researchers at Duke University have discovered a class of compounds called argyrodites that could lead to the development of safer and more efficient solid-state batteries. The materials' unique crystalline structures allow for fast ion conduction, making them promising candidates for energy storage applications.

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.

Better superconductors with palladium

Researchers have found a material, palladium, that is optimally suited for creating superconductors with high transition temperatures. This discovery has the potential to revolutionize electricity generation and transportation by enabling materials to conduct electricity without loss at normal room temperature and atmospheric pressure.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Renewable route to rubber material

Researchers at KAUST have developed a sustainable method for producing butadiene, a key component of synthetic rubber, using the Lebedev process and modernized catalysts. The new approach eliminates the need for fossil reserves and reduces environmental impact.

Probe where the protons go to develop better fuel cells

A team led by Professor Yoshihiro Yamazaki from Kyushu University discovered the chemical innerworkings of a perovskite-based electrolyte developed for solid oxide fuel cells. By combining synchrotron radiation analysis, large-scale simulations, machine learning, and thermogravimetric analysis, they found that protons are introduced at...

Light and milling balls for greener chemical processes

Researchers at Ruhr-University Bochum develop a new process using ball mills and light to produce chemical compounds without solvents. This method reduces reaction times by up to 56% and uses 98% less solvent than conventional methods.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

Customizing catalysts for solid-state reactions

Chemists have developed a high-performance catalyst specifically designed for solid-state mechanochemical synthesis, achieving efficient reactivity at near room temperature. The approach uses a metal catalyst attached to a long polymer molecule, which traps the catalyst in a fluid-phase, enabling fast and energy-efficient reactions.

Chaos on the nanometer scale

Researchers at TU Wien have detected clear indications of chaos in chemical reactions on nanometer-scale rhodium crystals, a phenomenon previously unseen in atomic scale systems. The coupling behavior can be controlled by changing the hydrogen concentration, leading to a transition from ordered to chaotic behavior.

On the road to better solid-state batteries

A Berkeley Lab-led team has designed a new type of solid electrolyte consisting of a mix of various metal elements, resulting in a more conductive and less dependent material. The new design could advance solid-state batteries with high energy density and superior safety, potentially overcoming long-standing challenges.

Aranet4 Home CO2 Monitor

Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.

Solid-state thermal transistor demonstrated

A research team at Hokkaido University has created a stable and effective solid-state electrochemical thermal transistor that can control heat flow with electrical signals. The device outperforms current liquid-state thermal transistors in terms of stability and efficiency.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

Making sense of coercivity in magnetic materials with machine learning

Researchers developed a new approach to analyze coercivity in soft magnetic materials using machine learning and data science. The method condenses relevant information from microscopic images into a two-dimensional feature space, visualizing the energy landscape of magnetization reversal. This study showcases how materials informatics...

Explainable AI-based physical theory for advanced materials design

Scientists at Tokyo University of Science developed an 'extended Landau free energy model' to analyze complex interactions in nanomagnetic devices, enabling causal analysis and visualization. The model proposed optimal structures for nano-devices with low power consumption.

Faster and more efficient computer chips thanks to germanium

Researchers at TU Wien have developed a new method for creating high-quality contacts between metal and semiconductor materials, enabling faster and more efficient computer chips. The technology uses crystalline aluminium and a sophisticated silicon-germanium layer system to overcome the problem of oxygen contamination.

DJI Air 3 (RC-N2)

DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.

The “dense” potential of nanostructured superconductors

Researchers have successfully prepared highly dense superconducting bulk magnesium diboride with a high current density using an unconventional spark plasma sintering method. The material exhibits excellent superconducting properties, including a high critical current density of up to 6.75 x 10^5 ampere/cm^2 at -253°C.

Engineers develop a new kind of shape-memory material

A new category of shape-memory materials made of ceramic, rather than metal, has been discovered by MIT researchers. The ceramic material can actuate without accumulating damage and withstand much higher temperatures than existing metals, making it suitable for applications such as actuators in jet engines.

In pursuit of better batteries

A team of University of Missouri researchers is working to understand why solid-state lithium-ion batteries struggle with performance issues. They will use a specialized electron microscope and thin film polymer coatings to study the interface between the battery cathode and electrolyte, with the goal of developing an engineered interf...

Fundamental research improves understanding of new optical materials

Scientists develop a colloidal synthesis method for alkaline earth chalcogenides, allowing control over nanocrystal size and surface chemistry. This enables the creation of more sustainable and environmentally friendly materials with potential applications in solar panels, LEDs, and bioimaging.

Researchers reveal reactive gallium-hydride species on gallium oxide surface

A research team from Dalian Institute of Chemical Physics has revealed the existence of reactive gallium-hydride species on the surface of gallium oxide using solid-state nuclear magnetic resonance. The discovery provides comprehensive information on the structural configuration and formation mechanism of these special M-H species.

Nikon Monarch 5 8x42 Binoculars

Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.

Recycling greenhouse gases

The TU Wien team has created a catalyst that can convert CO2 and methane into synthesis gas without the formation of carbon nanotubes. This approach, called dry reforming, has the potential to convert climate-damaging greenhouse gases into valuable products.

Amping up battery performance with black glasses grafted on micron silicon

Researchers at Japan Advanced Institute of Science and Technology have developed a novel anode material consisting of black glasses grafted silicon microparticles, which shows great promise in enhancing lithium-ion battery performance and energy storage. The material exhibits high lithium diffusion ability, reduced internal resistance,...

A simple, cheap material for carbon capture, perhaps from tailpipes

Researchers have created a cheap and energy-efficient way to capture carbon dioxide from smokestacks using porous melamine material. The process is simple to make and requires primarily off-the-shelf melamine powder, making it a promising solution for scaling down carbon emissions from vehicle exhaust or other movable sources.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.