The researchers propose a hybrid organic–inorganic gas sensor design that enhances gas sensing performance while maintaining sensing speed. The proposed design outperforms conventional sensors in terms of chemical sensitivity to NO2, showcasing impressive durability and higher potential for long-term installation.
The study reveals sizeable variations and instabilities in electron energies for freshly cleaved MoS2 surfaces, but also shows that atomic hydrogen treatment can effectively neutralize these effects. The findings have potential applications in electronics, photonics, sensors, and catalysis.
Research explains why X-ray diffraction images 'darken' at high intensities, offering new perspective for ultra-short laser pulse production. Different atoms respond differently to ultrafast X-ray pulses, potentially improving atomic structure reconstruction and generating even shorter pulses.
Researchers at the University of California, San Diego have discovered a way to make ceramics tougher and more resistant to cracking. By using metal atoms with more electrons in their outer shell, they unlocked the potential to enable ceramics to handle higher levels of force and stress.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
A groundbreaking study reveals that linear defects in diamond can spread at speeds exceeding the speed of sound, which could impact our understanding of material strength, failure, and manufacturing. This discovery may lead to new insights into earthquake ruptures, structural failures, and precision manufacturing.
The interdisciplinary team, led by Kaiyuan Yang, will focus on leveraging the spin and charge of electrons in multiferroics to process and store information. The goal is to improve energy efficiency for computing devices, potentially reducing energy consumption by three orders of magnitude.
A study using computational modelling reveals that Neanderthals required advanced cognitive traits to produce birch bark tar, including understanding, information processing, and communication. The findings suggest that prehistoric tar making likely involved complex upscaling techniques and group collaboration.
A new study breaks down the complex structure of snail mucus, revealing three unique types of secretions with different functions. The researchers identified novel proteins, some of which have never been seen before, and found that subtle differences in composition can significantly impact properties.
The Graphene Flagship project has produced significant contributions to Europe's GDP and GVA, with an estimated return on investment of 14.5-fold. By 2030, the project aims to create over 81,000 jobs internationally.
Apple MacBook Pro 14-inch (M4 Pro)
Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.
Researchers from Osaka University and others have used topological data analysis and machine learning to predict the properties of amorphous materials. The study employed a method combining persistent homology and machine learning to accurately predict the energies of disordered structures composed of carbon atoms at varying densities.
A recent study presents an exciting new way to measure the crackling noise of atoms in crystals, enabling the investigation of novel materials for future electronics. The method allows researchers to study individual nanoscale features and identify their effects on material properties.
Researchers at Brookhaven Lab's Center for Functional Nanomaterials have created a new layered structure with unique energy and charge transfer properties. The discovery could lead to advancements in technologies such as solar cells and optoelectronic devices.
Scientists have demonstrated techniques to fabricate layered semiconductors with suitable bandgap and band structure, offering a new class of materials in photoelectronic applications. Heterogeneous integration of TMDs and traditional semiconductors enables the exploration of next-generation electronic and optoelectronic devices.
Researchers created a nanocomposite of hexagonal and cubic boron nitride, which exhibits unexpected thermal and optical properties. The composite's low thermal conductivity makes it suitable for heat-insulating electronic devices, while its second-harmonic generation property is larger than expected after heating.
Fluke 87V Industrial Digital Multimeter
Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.
A study published in Nature Communications reveals unusual patterns of small and large particles in a model liquid, which can affect the formation of ideal glass. The findings raise doubts about whether this model liquid can be considered an ideal glass-forming liquid.
Increasing SWCNT diameter improves responsivity, detectivity and response time of heterojunction films. Larger-diameter SWCNTs enhance film performance by increasing built-in electric fields and separating hole carriers from photogenerated excitons.
Researchers at Hebrew University of Jerusalem discovered supershear tensile cracks that surpass classical speed limits and transition to near-supersonic velocities. These findings challenge traditional understanding of fracture mechanics, offering new avenues for studying material properties.
GoPro HERO13 Black
GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.
Researchers at North Carolina State University have developed a new robot called RoboMapper that can conduct experiments more efficiently and sustainably to develop new semiconductor materials. The robot automates the process of testing multiple samples simultaneously, reducing time and energy consumption by nearly 10 times.
Researchers from Sandia National Laboratories have discovered that metals can heal themselves by fusing back together microscopic cracks without human intervention. This breakthrough could lead to the development of self-healing machines and structures, reducing wear and tear damage and making them safer and longer-lasting.
Fiber sensing scientists from Shenzhen University have developed an encrypted fiber optic tag that can be used for all-optical labeling and recognition of optical transmission channels. The team proposed a method using fiber Bragg grating arrays prepared by femtosecond laser direct writing to flexibly store different coding sequences.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
AnalySwift will develop DATC, a design tool for engineers to analyze lightweight structures made from advanced tailorable composites. The tool aims to improve NASA's capabilities in designing and analyzing aerospace structures, reducing the need for costly physical experiments.
Researchers from Osaka University have demonstrated a method of dehydrating CNFs to a dense powder without affecting their three key properties. The resulting CNF powders retain high viscosity, transparency, and tunable properties.
Researchers at USTC developed a high-performance cellulose-based nanopaper with excellent mechanical and electrical insulating properties under extreme conditions. The material exhibits high tensile strength, toughness, and electric breakdown strength, making it suitable for protecting equipment in harsh environments.
Researchers at MIT have developed a superabsorbent material that can soak up record amounts of moisture from the air, even in dry conditions. The material is made by infusing hydrogel with lithium chloride and has shown to absorb and retain unprecedented amounts of water vapor.
Sony Alpha a7 IV (Body Only)
Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.
Scientists designed materials with mechanical memory by introducing frustration into their structure, resulting in a new type of order. This breakthrough could be used to create robotic arms and wheels with predictable bending mechanisms, as well as more efficient quantum computers.
Researchers at The University of Tokyo have developed a new atomic layer deposition (ALD) technique for depositing thin layers of oxide semiconductor materials, resulting in high carrier mobility and reliability. This breakthrough enables the production of devices with normally-off operation, high mobility and reliability.
Researchers from the University of Amsterdam have created a new class of materials that combine stiffness with vibration-absorbing properties. These 'buckled' materials have a wide range of potential applications across various scales, from aerospace to microscale designs.
The new Collaborative Research Center will explore opportunities of defect engineering in soft matter, aiming to develop a novel design concept. The researchers will focus on doping, connectivity, and topological defects, with the ultimate goal of combining them into one single system.
Researchers from Osaka University discovered a novel material that transitions from a crystal to a liquid when exposed to ultraviolet irradiation, enabling a detailed understanding of the crystal-melting process. The material exhibits changes in luminescence during melting, indicating molecular-level changes in shape.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
Researchers have developed software to remove signal interference from neutron experiments under megabar pressures. This enables the accurate extraction of data on extraordinary atomic structures of materials.
Researchers found that orb weaver spiders' glue proteins differ in proportion between dry and humid environments, enabling rapid adaptation to local conditions. The study sheds light on the evolution of biological glues and their potential applications in industry and medicine.
Osaka University researchers develop a cellulose-based material, called nanopaper e-skin, that makes effective contact with the skin while maintaining breathability and comfort. The substrate can withstand deformation, sterilization, and environmental sustainability, making it a promising candidate for electrophysiological monitoring.
A team led by Associate Professor Jonathan Boreyko has discovered that ice can quench heat more effectively than water, especially at high temperatures. The study found that ice absorbs heat as it melts, reducing the amount of heat available for vapor bubbles to form.
A team of researchers at Istituto Italiano di Tecnologia has developed a totally edible and rechargeable battery cell, utilizing riboflavin and quercetin as anode and cathode. The battery can provide current for small electronic devices and may have applications in health diagnostics, food quality monitoring, and edible soft robotics.
Kestrel 3000 Pocket Weather Meter
Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.
Researchers developed a method to characterize nanomaterials using sequential infiltration synthesis in nanostructured polymers. This technique allows for the creation of extremely small structures on semiconductor surfaces, enabling further miniaturization of next-generation microelectronic components.
Researchers engineered a lightweight material by fine-tuning interlayer interactions in 2D polymers, retaining desirable mechanical properties even as a multilayer stack. The material's strong interlayer interaction is attributed to hydrogen bonding among special functional groups.
Scientists at TU Wien have developed a technique to control the shape and size of nano gold structures using highly charged ions. The experiment shows that the impact force is not the decisive factor, but rather the electrical charge of the ions, which deposits energy at the point of impact and disrupts the crystal structure of the gold.
Researchers discovered that cancer cells' glycocalyx thickness affects immune cell evasion and engineered immune cells work better with thinner barriers. They also developed special enzymes to overcome the barrier, potentially improving immunotherapies.
Rigol DP832 Triple-Output Bench Power Supply
Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.
Researchers at the University of Missouri are acquiring a new transmission electron microscope (TEM) with a $800,000 grant from the National Science Foundation. The TEM will allow them to conduct experiments in real-time and gain a greater understanding of material structure at an atomic level.
A team from Chalmers University of Technology has developed a method to observe the formation of lithium microstructures in real-time using X-ray tomographic microscopy. This breakthrough aims to improve the safety and capacity of lithium metal batteries, which could replace traditional lithium-ion batteries in the future.
Researchers discover that graphene oxide's surface oxygen content is crucial for its antibacterial activity, with different interaction modes leading to distinct effects. Understanding this relationship can help design safer materials and combat antimicrobial resistance.
Apple iPad Pro 11-inch (M4)
Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.
Channeling ions into grain boundaries in perovskite materials improves the stability and operational performance of perovskite solar cells, paving the way for more efficient and practical solar cell technologies. This breakthrough finding may also inform the development of more efficient energy storage technologies.
Scientists at SLAC and Stanford University have created a new type of quantum material with a herringbone-like pattern, showcasing the Jahn-Teller effect in a layered material. The resulting distortions are huge compared to those achieved in other materials, offering exciting possibilities for further investigation.
Rice University scientists have developed a method to engineer wood that traps carbon dioxide while increasing its strength. This process involves removing lignin and hemicellulose from the wood and replacing them with metal-organic framework particles, making it a sustainable alternative to traditional materials.
Researchers from City University of Hong Kong have developed a novel, tiny device to observe liquid-phase electrochemical reactions in energy devices at nanoscale. The device enables real-time and high-resolution visualization of complex electrochemical processes.
Creality K1 Max 3D Printer
Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.
Researchers at Drexel University have developed a thin film device that can dynamically control electromagnetic wave shielding using MXene materials. The device can convert from shielding to quasi-electromagnetic wave transmission by electrochemical oxidation, making it suitable for various security applications.
Researchers at Beihang University discovered ultrathin vanadium oxychloride's optical anisotropic properties, which will facilitate the design of novel functional devices. The material's unique characteristics make it suitable for emerging nanotechnology applications such as spintronics and optospintronics.
A Polish-German-Italian team developed a new simulation tool called XSPIN to simulate X-ray-induced demagnetisation in multilayer materials. The tool allows for control over laser pulse parameters, such as energy and duration, to achieve specified spatial and temporal scales.
A quarter-mile segment of the Klamath Geo Trail was successfully resurfaced using volcanic ash from Mount Mazama, demonstrating its potential as a more sustainable and locally sourced pozzolan. The surface treatment improved firmness and stability, making it accessible to people with mobility devices.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
Scientists at Johannes Gutenberg University Mainz have developed a new class of materials for transporting spin waves over long distances in antiferromagnets. This breakthrough could significantly increase computing speed and reduce waste heat in microelectronic devices.
An international team has discovered a quantum state in which atomic alignment does not order at ultracold temperatures, unlike usual behavior. This liquid-like quantum state could be used to develop highly sensitive quantum sensors, enabling precise registration of magnetic fields or temperatures.
A Japanese research team successfully constructed the first polymeric Weaire-Phelan structure, a previously theoretical form predicted to be the most efficient solution for a century-old tessellation problem. The structure was achieved through a novel polymerization-induced phase separation method.
Researchers at Monash University found that electric fields and applied strain can turn magnetism on and off in two-dimensional metal-organic frameworks. This discovery could lead to applications in magnetic memory, spintronics, and quantum computing.
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
Researchers at North Carolina State University have developed a new self-healing composite that can repair itself in place without removal. The technology addresses two longstanding challenges, increasing the lifespan of structural components by up to 500%. This resolves limitations such as overheating and limited self-repair cycles.
Researchers at the University of Pennsylvania have developed an algorithm that enables 2D materials to maintain their mechanical strength after conversion into 3D structures. The algorithm is inspired by kirigami art and mimics the structure of nacre, a natural shell coating known for its robust mechanical properties.
Researchers at the University of Colorado Boulder have discovered a novel phenomenon in a type of quantum material that can change its electrical properties under specific conditions. The material, known as Mn3Si2Te6, exhibits colossal magnetoresistance when exposed to certain magnetic fields, allowing it to behave like a metal wire.
Scientists at Duke University have engineered materials capable of producing tunable plasmonic properties while withstand extremely high temperatures. The new high-entropy carbides can achieve improved communications and thermal regulation in aerospace technologies, including satellites and hypersonic aircraft.
Researchers at the University of Turku discovered that hackmanite changes color when exposed to nuclear radiation, retaining a memory trace that allows it to be reused. This unique property enables the development of reusable radiochromic films for measuring radiation doses and mapping dose distribution.
Apple AirPods Pro (2nd Generation, USB-C)
Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.
Scientists at Drexel University have created a new secondary-ion mass spectrometry technique to study the atomic layers of MXenes and MAX phases. The technique allows for deeper understanding of the materials' structure and composition, leading to breakthroughs in their properties and potential applications.
A team of researchers from NIST, UW-Madison, and Argonne National Laboratory identified key compositions that enable consistent 3D-printing of 17-4 PH stainless steel with favorable properties. The new findings could help producers cut costs and increase manufacturing flexibility.