LIST's patented infrared welding process enables rapid assembly of thick carbon-fibre-reinforced thermoplastic components, reducing weight, costs and environmental impact. The innovation is estimated to reduce CO2 emissions by 12.5 tonnes per wing rib.
Researchers at Nanjing University of Aeronautics and Astronautics created an active metal metamaterial that can bend and recover its shape, enabling aircraft wings to morph smoothly in flight. The material is lightweight, strong, and capable of adjusting its shape on demand.
Researchers create a new method for laser-based powder bed fusion that achieves unprecedented lattice walls and surfaces while reducing memory demand. The approach enables the high-fidelity fabrication of microscale shell lattices with improved strength and toughness.
Scientists at Tsinghua University introduce a new technique to carve complex shapes on material surfaces, enabling more design freedom and efficiency in surface design. The method uses high-speed vibrations to create convex microstructures that can change how a surface interacts with its environment.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
Global experts discuss the future of additive manufacturing in various applications, including bioprinting living tissues and creating smart consumer products. Researchers showcase advancements in machine learning, real-time sensing, and multi-material 3D printing.
A new post-processing route improves tensile strength and ductility in 3D-printed alloys by combining deep cryogenic treatment and laser shock peening. This method transforms the microscopic structure of 3D-printed metals, relieving internal stresses and enhancing mechanical resilience.
Researchers from Empa developed machine learning algorithms to optimize laser-based manufacturing techniques, reducing preliminary experiments by two-thirds. They also implemented real-time optimization using field-programmable gate arrays (FPGAs) for improved welding processes.
Scientists successfully fabricated micron-scale metal patterns on living tardigrades, enabling controlled movement through magnetic fields. This breakthrough opens doors for micro/nanofabrication of living organisms and bio-inorganic hybrid systems.
A new hardware platform for AI accelerators capable of handling significant workloads with reduced energy requirement has been developed. The platform leverages III-V compound semiconductors to create photonic integrated circuits, which operate at the speed of light with minimal energy loss.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
Researchers have developed a cleaner method to extract iron from synthetic iron ore using electrochemistry, which could reduce air pollution emissions and energy consumption. The new process is estimated to be comparable in cost to traditional blast furnaces.
Researchers will use sensors and software to predict AM part lifespan, enabling cost savings and extending part life. The project aims to improve Darwin software to provide detailed insights into manufacturing processes.
Researchers found significant cell changes in workers exposed to hexavalent chromium at levels below Sweden's current limit. The study suggests the need for stricter safety regulations and lower limits for this carcinogenic substance.
Researchers developed Cu/Zn solid-solution phase hosts to overcome electrochemical limitations in multivalent metal ion batteries. The material's layered crystal structure and abundant interlayer confined species provide favorable diffusion pathways for charge carriers.
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.
Researchers have developed novel membranes that can pull lithium directly out of salt-lake brines using electricity, leaving other metal ions behind. The process could reduce the environmental impact of lithium mining and contribute to more efficient energy storage systems for renewable energy sources.
Researchers discovered that tetrahedral Co²⁺ is preferentially incorporated into the lattice in early stages of Co(OH)₂ formation. The retention of tetrahedral Co²⁺ is linked to effective OH⁻ concentration, paving the way for optimized synthesis methods and enhanced material properties.
Researchers unveil Ba-Si orthosilicate oxynitride-hydride as a transition metal-free catalyst, offering a more sustainable approach to ammonia production. The novel catalyst demonstrates exceptional stability and higher activity than conventional ruthenium-loaded MgO catalysts.
Cornell researchers discover way to control metal solidification transformations by adjusting alloy composition, leading to improved strength and reliability of printed metal parts. The method involves disrupting column-like grain growth, significantly reducing grain size and improving yield strength.
A POSTECH research team developed a novel multidimensional sampling theory to overcome limitations of flat optics. Their study identifies constraints of conventional sampling theories and presents an innovative anti-aliasing strategy, significantly enhancing optical performance.
Apple AirPods Pro (2nd Generation, USB-C)
Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.
Researchers used Re–Os dating to uncover the timing of Japan's geological history, revealing key insights into the region's evolution. The study focused on Besshi-type VMS deposits, which provided precise markers for the timing of subduction and ridge subduction beneath Japanese Islands.
Researchers at Pohang University of Science & Technology have developed a technology that uses microwaves to produce clean hydrogen in minutes, overcoming limitations of existing methods. By leveraging microwave energy, the team achieved significant breakthroughs in reducing production temperatures and time.
A Tel Aviv University study finds that microplastic particles are excreted in the feces of marine animals, making them undetectable as plastic. This process can lead to increased carbon and nitrogen levels on the seafloor, promoting algal blooms and disrupting the marine food web.
The University of Texas at Arlington is developing more efficient processes for sourcing rare earth elements needed to produce high-performance magnets. The project aims to make the mining of these critical materials more environmentally sustainable and cost-effective.
Sony Alpha a7 IV (Body Only)
Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.
Researchers at Max Planck Institute for Sustainable Materials have developed a novel method to create lightweight, nanostructured porous martensitic alloys by harnessing dealloying and alloying processes. The approach enables CO2-free and energy-saving production of high-strength materials.
MIT engineers developed a nanofiltration process to capture aluminum ions from cryolite waste, reducing hazardous waste and improving efficiency. The membrane selectively captured over 99% of aluminum ions, enabling the recovery of aluminum and reducing the need for new mining.
The NSF is seeking proposals for research on transport phenomena and fluid dynamics in space, leveraging the ISS National Lab's microgravity environment. Selected projects will receive funding to advance fundamental and translational research benefiting humanity.
Researchers at Institute of Science Tokyo have identified key factors driving photochemical water oxidation. By fine-tuning reaction potential and pH conditions, they enhance the efficiency of this process, paving the way for more sustainable energy solutions.
Researchers at Pusan National University developed a hybrid model to predict metal wear in magnesium alloys, enabling safer, lighter designs. The model combines machine learning and physics to improve fatigue life prediction, offering greater predictive reliability for enhanced safety and longevity.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
A new biomass densification technique increases bioethanol production efficiency by up to 95% sugar retention and 90% enzymatic sugar conversion. The method also utilizes biomass residues as effective bio-adsorbents for dye wastewater treatment, achieving removal rates of over 90%.
Compressed Ultra-Compact Femtosecond Photography (CUF) uses a super-dispersive metalens to capture transient events in a single image, overcoming conventional CUP technology's limitations. The system achieves ultrafast imaging at hundreds of trillions of frames per second with improved compactness and reliability.
Researchers at Politecnico di Milano discovered that the ratio of CO2 to methane present in the reaction determines carbon build-up on catalysts. This finding paves the way for more efficient technologies and longer-lasting catalysts.
A process yielding record-high performing transistors from solution-deposited semiconductors has been developed, despite higher defect concentrations in the material. The researchers' work enables large-area applications and efficient processing, paving the way for high-performance electronics.
A new study of bubbles on electrode surfaces could help improve the efficiency of electrochemical processes by understanding how blocking effects work. The findings show that only a smaller area of direct contact is blocked from its electrochemical activity, not the entire surface shadowed by each bubble.
Creality K1 Max 3D Printer
Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.
The ASU-led initiative, EPIXC, aims to develop cost-effective technologies to replace fossil fuel-based industrial process heating with clean electricity. Five jump-start projects were selected to advance innovations in electrified industrial process heating, covering various sectors and temperature ranges.
Iowa State University researchers are using additive manufacturing, also known as 3D printing, to create tungsten shields and components that can withstand high temperatures and radiation in nuclear reactors. The goal is to improve the efficiency of nuclear power and reduce costs.
Researchers have created a single-step method for producing Invar alloys with zero CO2 emissions and improved mechanical strength. The new process integrates metal extraction, alloying, and thermomechanical processing into one reactor step.
Apple MacBook Pro 14-inch (M4 Pro)
Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.
Researchers have successfully mass-produced aluminum nanowires using a novel atomic diffusion technique, paving the way for mass production of high-performance nanodevices in fields like sensing devices and optoelectronics. The new method enables precise control over NW growth, leading to significant improvements in quality and purity.
Researchers developed a novel strategy for designing MOFs, merging bottom-up and top-down approaches to explore structures based on metal clusters. The Up-Down Approach enables the creation of novel materials with tailored properties, including high chemical stability and diverse chemical properties.
Researchers discovered that sponges in the Gulf of Eilat employ a unique tactic to deter predators by storing high concentrations of toxic molybdenum. The symbiotic relationship between the sponge and a bacterium enables this process, allowing the sponge to accumulate metals and neutralize their toxicity.
A research project, ACCELERATE, aims to significantly reduce operational qualification time and cost in additive manufacturing by improving validation through detailed tasks and documentation. The project will tackle various aspects of AM operations, including facility controls, operator training, software configuration, and process mo...
Researchers have developed a new material with nanoscale voids that improves mechanical performance by increasing strength and ductility. The discovery could have applications in various industries such as portable electronics and aviation manufacturing.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
Researchers at Pohang University of Science & Technology have unveiled an eco-friendly method to extract rare metals from semiconductor waste, recovering precious tungsten and assessing its economic viability. The bioleaching process, using a fungus to dissolve metals, is found to be 7% cheaper than traditional methods.
Researchers developed a method to produce cobalt nanoparticles with controlled crystal phase, leading to higher selectivity and efficiency in hydrogenation reactions. The study showcases the potential of abundant cobalt as an alternative to noble metal catalysts.
A team of researchers from POSTECH has introduced a novel approach to balance strength and elongation in metallic materials. By using periodic spinodal decomposition, they created an alloy that boasts both high strength and high elongation, achieving a yield strength of 1.1 GPa with nearly the same elongation as before.
The Purdue researchers created a patent-pending process to develop ultrahigh-strength aluminum alloys suitable for additive manufacturing. The alloys exhibit high strength and beneficial large plastic deformability, exceeding the range of traditional high-strength aluminum alloys.
Researchers developed a thin gold membrane with pores to selectively amplify Raman signals from surfaces, enabling the study of surfaces for the first time. This breakthrough improves the efficiency and degradation behavior of batteries, catalysts, and solar cells.
Kestrel 3000 Pocket Weather Meter
Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.
Researchers developed a novel air-handleable garnet-type solid electrolyte technology that improves surface and internal properties, preventing contamination layer formation. This innovation enables the creation of ultra-thin lithium solid-state batteries with high energy density and low weight.
Researchers have discovered a novel transition-metal-free aluminosilicate ferrierite zeolite catalyst that enables direct conversion of methane to methanol. The new process achieves 305 π mol gˑ minǘ methanol production rate with high selectivity, presenting an environmentally friendly solution for converting greenhouse gases into valu...
Scientists studied the nickel-tungsten alloy interface to understand its properties and behavior. The research revealed the formation of intermetallic compounds and diffusion-induced recrystallization regions, which significantly impact the material's mechanical, thermal, and chemical properties.
Fluke 87V Industrial Digital Multimeter
Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.
Researchers propose a new strategy to further enhance the performance of gas sensors using single-atom catalysts. The review discusses the application, structure, and principles of semiconductor-based gas sensors, as well as the mechanisms through which single-atom catalysts improve gas sensitivity.
Researchers have developed an active learning strategy to accelerate the synthesis of high-performance engineered biochar with enhanced CO2 uptake. The approach nearly doubled CO2 capture performance, showcasing its transformative impact.
Researchers from Tsinghua University propose a novel process to convert cutting chips into unique microstructures, transforming waste into valuable materials. The finding has potential applications in enhanced heat transfer, anti-icing, and antibacterial properties.
Researchers from Pohang University of Science & Technology developed an economical and efficient water electrolysis catalyst using oblique angle deposition method and nickel. The catalyst resulted in a remarkable 55-fold improvement in hydrogen production efficiency compared to traditional thin film structures.
Researchers developed ultra-thin defect-free semiconducting fibers, over 100 meters long, which can be woven into fabrics. The fibers demonstrate excellent electrical and optoelectronic performance, enabling various applications such as wearable electronics and sensors.
Apple Watch Series 11 (GPS, 46mm)
Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.
Researchers discovered that spent brewer's yeast, used in Marmite production, can selectively capture metals from electronic waste streams, recovering over 50% of aluminum, copper, and zinc. The yeast can be reused multiple times, making the process economically feasible.
Nontraditional energy-assisted mechanical machining uses vibration, laser, electricity, etc. to improve machinability and reduce process forces in processing difficult-to-cut materials and components. The technology provides a feasible way to enhance material removal rate and surface quality.
Researchers developed a novel concept to control chemical reactions during catalytic processes by employing light. They proposed an innovative nanosystem that enables rapid and efficient catalyst deactivation without additional chemicals, facilitating controlled reaction rates.
Researchers at WVU have developed a microwave technology that can significantly reduce industry's energy consumption and carbon emissions. The technology, which uses microwaves to carry out chemical reactions, has the potential to produce ethylene and ammonia in a single reactor, leading to increased efficiency and lower emissions.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
A team of researchers from Tokyo University of Science employed a new 'transmetallation' technique to synthesize lateral heterojunctions of 2D coordination nanosheets. The method enables the creation of ultrathin electronic devices with unique properties, paving the way for innovative devices.
The University of Houston is part of a $30 million DOD grant to enhance national security through community investments. The grant will support the development of novel advanced manufacturing methods to ensure a stable supply of domestically produced high-quality tactical alloys critical for national defense.
The ShAPE technology developed at PNNL can transform 100% post-consumer scrap aluminum into usable extrusions meeting ASTM standards for strength and flexibility. This process conserves nearly all the energy required to manufacture new aluminum products, reducing dependency on imported primary aluminum and greenhouse gas emissions.
Nikon Monarch 5 8x42 Binoculars
Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.