Researchers from TU Wien have provided a surprising explanation for the long-standing relation between magnetism and superconductivity in quantum materials. Altermagnetism, an unusual form of magnetism, is found to be experimentally observable in certain materials when superconductivity sets in.
Researchers at Max Planck Institute discovered quantum coherence and interference patterns in CsV₃Sb₅, defying single-particle physics expectations. The crystal's geometry influences the collective quantum behavior of electrons, potentially leading to new materials with tunable resonance.
Apple Watch Series 11 (GPS, 46mm)
Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.
A new study by MIT researchers evaluates the scale-up potential of over 16,000 quantum materials, finding that those with high quantum fluctuation in electrons tend to be more expensive and environmentally damaging. The team identified promising candidates with an optimal balance between quantum functionality and sustainability for fur...
Researchers at Nagoya University solved the puzzle of loop current switching in kagome metals, a special group of quantum metals. Weak magnetic fields reverse tiny loop currents, changing the material's macroscopic electrical properties and reversing current flow direction.
Researchers at Nagoya University have developed a new method to create gallium oxide semiconductors with stable p-type layers, allowing for twice the current capacity of previous devices. This breakthrough enables improved energy efficiency, reduced waste, and lower operating costs for electronics.
Researchers introduced hydrogen into high-quality Ge thin films, reducing hole density by three orders of magnitude. Low-temperature annealing repaired surface defects, further improving device performance and applicability.
Scientists have created a novel method to distinguish between healthy and senescent cells using electric fields, marking a fresh start in ageing research. The frequency-modulated dielectrophoresis (FM-DEP) technique is label-free, rapid, and easy to apply, allowing for the characterization of cell type by measuring the cutoff frequency.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
Researchers at POSTECH have developed an interlocked electrode-electrolyte system that forms covalent chemical bonds between the electrode and electrolyte, maintaining long-term stability. The IEE-based pouch cell demonstrated significantly higher energy density compared to traditional lithium-ion batteries.
Scientists have developed a new microscope that accurately measures directional heat flow in materials. This advancement can lead to better designs for electronic devices and energy systems, with potential applications in faster computers, more efficient solar panels, and batteries.
Researchers at MIT have captured the first images of individual atoms freely interacting in space, visualizing never-before-seen quantum phenomena. The technique allows scientists to directly observe correlations among 'bosons' and fermions, shedding light on their behavior and interactions.
Researchers detect anomalous Hall effect in collinear antiferromagnets with non-Fermi liquid behavior, revealing a 'virtual magnetic field' that boosts the phenomenon. The findings open up new possibilities for information technologies and require further experimental confirmation.
Researchers at King's College London and Harvard University develop a detector that can identify axions, leading potential candidates for dark matter. The Axion Quasiparticle (AQ) technology has the potential to discover dark matter in five years with further development.
Rigol DP832 Triple-Output Bench Power Supply
Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.
Researchers at TU Wien have developed a new electrochemical synthesis method for MXene, overcoming the difficulties of producing this 'miracle material'. The new process uses electricity instead of toxic hydrofluoric acid, allowing for safer and more sustainable production.
New research validates theoretical models on how nanoscopic ripples affect material properties, leading to a better understanding of their mechanical behavior. The study's findings have significant implications for the development of microelectronics and other technologies that rely on thin films.
A team of researchers from Télécom Paris and Politecnico di Milano has developed a system of optical micro-antennas integrated into a programmable photonic chip, which can adapt in real time to restore chaotic signals. This innovation paves the way for chaos-based encryption for secure high-speed communication in hostile environments.
Fluke 87V Industrial Digital Multimeter
Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.
Researchers at Waseda University developed a novel self-assembly process to create multilayered films with superior thermal, mechanical, and gas barrier properties. The film exhibits enhanced hardness and self-healing ability compared to conventional materials.
Researchers developed a Cu-Ta-Li alloy with exceptional thermal stability and mechanical strength, combining copper's conductivity with nickel-based superalloy-like properties. The alloy's nanostructure prevents grain growth, improving high-temperature performance and durability under extreme conditions.
Researchers enhance organic scintillators' light yield by introducing charge-separated state traps, achieving higher LY than traditional inorganic scintillators. The resulting scintillator displays a super-long afterglow for 7 hours, enabling new non-destructive testing methods.
Researchers have successfully achieved low-threshold anisotropic polychromatic emission from monodisperse quantum dots by coupling them with microcavities, overcame technical bottlenecks for practical applications. This enables broadband gain, amplification, and even lasing, as well as full-color display and patterning.
The POSTECH research team developed a smartphone-type OLED panel that can transform its shape while functioning as a speaker, maintaining ultra-thin flexibility. The panel uses electrically driven piezoelectric polymer actuators to achieve complex forms without mechanical hinges or motors.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
Researchers at North Carolina State University have developed a novel material that can convert carbon dioxide from the atmosphere into a liquid fuel. The material, called tincone, has both organic and inorganic properties, which improve its stability and electrochemical properties.
The study discovered a giant deformation potential of 123 eV, leading to exceptionally long polarization response times and enhanced spin lifetimes. Small polaron formation was confirmed through various techniques, including optical Kerr spectroscopy, X-ray diffraction, and phonon dynamics.
Researchers at Weizmann Institute create innovative method to track rapid material changes using two laser beams, enabling precise reconstruction of optical delay changes. This advance could lead to the development of fastest processors possible, increasing data transmission speed.
Kestrel 3000 Pocket Weather Meter
Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.
Biomolecular condensates constantly shift their phase, affecting movement and chemical activities within the cell. Researchers have discovered that aging-associated interactions can lead to dysfunction and disease, and manipulating surface signals may help promote healthy biological reactions.
Researchers at UC San Diego create computational approach to model chiral helimagnets using quantum mechanics calculations. They successfully predicted key parameters, including helix wavevector, period, and critical magnetic field, opening opportunities for designing better materials.
Researchers developed a conjugated phthalocyanine framework with enhanced electron-withdrawal properties and flexibility, leading to improved capacities, rate capabilities, and cyclic stability in high-voltage lithium metal batteries. The framework also showed longer operating life and higher capacity retention.
Researchers developed new photon avalanching nanoparticles that exhibit high nonlinearities, overcoming challenges in realizing intrinsic optical bistability at the nanoscale. The breakthrough paves the way for fabricating optical memory and transistors on a nanometer scale comparable to current microelectronics.
Sony Alpha a7 IV (Body Only)
Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.
A research team at POSTECH developed a synthesis method that precisely controls the size and shape of perovskite nanocrystals using liquid crystalline antisolvents. The method produces uniformly sized particles without additional purification processes, accelerating commercialization of optoelectronic devices.
The University of Vaasa's FlexiPower project aims to develop and commercialize a 'Building as a Battery' (BaaB) solution that enables dynamic response of building heating and cooling systems to power grid needs. This innovation offers cost-effective and scalable solutions for balancing the power grid.
Researchers synthesized Fe1+xSe2 nanoflakes with controlled intercalation ratios, discovering a new class of materials with room-temperature magnetism and unique half-metallic behavior. Interkalation regulates magnetic and electrical properties, including Curie temperatures and spin gap.
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
Researchers from Osaka University have developed an ultrathin vanadium dioxide film on a flexible substrate, preserving its electrical properties. This breakthrough enables adaptable electronics that can adjust to temperature, pressure, or impact in real-time.
The study reveals that relaxor ferroelectrics like lead magnesium niobate-lead titanate (PMN-PT) exhibit improved performance when shrunk down to a precise range of 25-30 nanometers. This 'Goldilocks zone' size effect could enable advanced applications such as nanoelectromechanical systems and energy harvesting.
Dr. Alison Altman, a Texas A&M chemist, has received the NSF CAREER Award to support her research on underexplored elements of the periodic table and their applications in technology. She aims to expand chemistry education at all levels, emphasizing its impact on everyday life.
Scientists have discovered a way to turn ordinary liquids into epsilon-near-zero (ENZ) materials by interacting them with intense femtosecond laser pulses. This creates a new class of materials with tunable light propagation properties, opening up possibilities for advances in optical sensing and communication.
GoPro HERO13 Black
GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.
Researchers at Virginia Tech have discovered a new solid lubricating mechanism that can reduce friction in machinery at extremely high temperatures. The novel coating has the potential to make components from rockets to semiconductors more safe, durable, and cost-effective.
Researchers used advanced X-ray techniques to study infinite-layer nickelates, a promising family of high-temperature superconductors. They found that magnetic fluctuations and spin excitations are present in these materials, regardless of the presence of a capping layer.
Researchers are exploring halide perovskites, a material that converts sunlight into energy efficiently. The team created distinct properties using ultra-cool methods, enabling mass production of solar cells.
Marie Bo&r's $875,000 grant will fund her project to learn more about partons from an experimental and phenomenological point of view. Her goal is to understand the static and dynamic properties of quarks when confined in a nucleon, with potential implications for the study of radioactivity.
Researchers demonstrate that light can interact with a single-atom layer of thallium-lead alloys, restricting spin-polarized current flow to one direction. This phenomenon enables functionality beyond ordinary diodes and paves the way for ultra-fine two-dimensional spintronic devices.
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.
A new smart window technology combines liquid crystals with nanoporous microparticles and a patterned vanadium dioxide layer to simultaneously control visible light and infrared radiation. The device offers fast, efficient heat and visibility management, marking a significant step forward in energy-efficient building design.
Researchers used time-delayed laser pulses to capture electric and magnetic field vectors of surface plasmon polaritons, revealing a meron pair's spin texture. The study demonstrates stable spin structures despite fast field rotations.
Researchers Carsten Ullrich and Deepak Singh have discovered a new type of quasiparticle in all magnetic materials, challenging previous understanding of magnetism. This finding could lead to the development of faster, smarter, and more energy-efficient electronics.
Davis Instruments Vantage Pro2 Weather Station
Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.
Researchers at Tokyo Metropolitan University have developed a new technique to grow arrayed tungsten disulfide nanotubes with aligned orientations. This breakthrough resolves the issue of jumbled orientations in collected amounts of nanotubes, enabling the exploration of exotic electric and optoelectronic properties.
Pratyanik Sau, a senior at the University of Texas at Arlington, won an Outstanding Undergraduate Student Oral Presentation Award for his research on graphene using positrons. The study has implications for designing particle accelerators and fusion reactors.
Scientists at Lund University and Hokkaido University have successfully synthesized 2D gold monolayers with remarkable thermal stability and potential catalytic utility. The team used a novel bottom-up approach combined with high-performance computations to create macroscopically large gold monolayers with unique nanostructured patterns.
Researchers have discovered room-temperature ferroelectricity in single-element tellurium nanowires, paving the way for advancements in ultrahigh-density data storage. The discovery also enables fast switching speeds of less than 20 nanoseconds and impressive storage density exceeding 1.9 terabytes per square centimeter.
Researchers at the University of Jena have developed a method to functionalise graphene without interference, allowing for ultrasensitive detection of biomarkers. This breakthrough enables rapid, cost-effective diagnostics using graphene-based field-effect transistors.
DJI Air 3 (RC-N2)
DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.
A team of researchers at Nagoya University has developed a way to make LEDs brighter while maintaining their efficiency. By tilting the InGaN layers and cutting the wafer into different orientations, they have found that LEDs with lower polarization but in the same direction as standard LEDs show greater efficiency at higher power.
The comprehensive review highlights the impact of electron density topology on materials science and chemistry. It reveals connections between methods, including NG QTAIM, and their potential for simulating complex reactions, enabling more realistic computing and understanding of matter.
Nanomechanical resonators have been used to sense minuscule forces and mass changes. The new aluminum nitride resonator achieved a quality factor of over 10 million, opening doors to new possibilities in quantum sensing technologies.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
A team at Osaka Metropolitan University has designed a multilayer device to investigate spin currents, using an organic semiconductor material with a long spin relaxation time. This allows direct observation of phenomena due to spin current generation and enables researchers to gain deeper insights into the properties of spin currents.
Researchers developed a machine learning model to predict dielectric function of materials, facilitating novel dielectric material development. The model speeds up calculations by using chemical bonds between atoms and achieving accuracy close to first-principle calculations.
The article discusses how AI tools are transforming the architectural design process, enabling faster production of options for clients. Startups like Arqgen and SleepUp are leveraging generative design techniques to create innovative solutions for interior design and real estate development, respectively.
Researchers successfully visualized tiny magnetic regions, known as magnetic domains, in a specialized quantum material using nonreciprocal directional dichroism. They also manipulated these regions by applying an electric field, offering new insights into the complex behavior of magnetic materials at the quantum level.
Researchers have discovered that the strength of a coupling between nuclear spins depends on the chirality or handedness of a molecule. The study found that in molecules with the same handedness, the nuclear spin aligns in one direction, while in molecules with opposite handedness, it aligns in the opposite direction.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
Researchers at Northwestern University developed soft, sustainable electroactive materials using peptides and a snippet of plastic. These materials can store energy or record digital information and have potential applications in low-power electronics, sensors, and medical implants.
A new technique, RODAS, combines imaging and spectroscopy to capture fleeting atomic structures, providing unprecedented insights into material properties. This allows for rapid analysis without destroying the sample, enabling the study of defects and their influence on material behavior.
An interdisciplinary study found associations between exposure to environmental phenols like BPA and triclocarban and altered cardiac electrical activity, particularly in women with higher body mass indexes. Researchers identified moderate changes to cardiac electrical activity that could exacerbate existing heart disease or arrhythmias.
Nikon Monarch 5 8x42 Binoculars
Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.
Scientists developed a streamlined approach to assemble 2D molecular structures using a supramolecular scaffold, enhancing the efficiency of singlet fission and paving the way for advancements in solar cells. The new method created two distinct 2D self-assembling structures with high quantum yields, outperforming previous designs.
Researchers at the Max Planck Institute have made a groundbreaking discovery in chiral materials, enabling the creation of orbital electronics. The study reveals that certain materials naturally possess orbital angular momentum monopoles, which can be harnessed for memory devices and other applications.