University of Waterloo researchers investigate how fuel cell-powered trucks can replenish overworked electricity grids with clean energy. The study proposes a mobile generator system, where idled electric vehicles act as power sources, reducing peak demand and carbon emissions.
Scientists at Brookhaven National Laboratory and Columbia University developed a tandem electrocatalytic-thermocatalytic conversion method to convert CO2 into carbon nanofibers. This approach can occur at relatively low temperatures, around 400°C, making it a more practical and industrially achievable process.
Researchers from Kaunas University of Technology and Lithuanian Energy Institute investigate the possibilities of plasma gasification to convert surgical mask waste into hydrogen-rich syngas, which shows a 42% higher heating value than biomass. The obtained syngas can be used as clean fuel with low carbon emissions.
Researchers from City University of Hong Kong developed a novel strategy to engineer stable and efficient ultrathin nanosheet catalysts using Turing structures. This approach effectively resolves the instability problem associated with low-dimensional materials in catalytic systems, enabling efficient and long-lasting hydrogen production.
Nikon Monarch 5 8x42 Binoculars
Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.
Researchers have developed a solid electrolyte that allows for efficient hydride ion conduction at room temperature, enabling the creation of safer, more efficient hydrogen-based batteries and fuel cells. This breakthrough provides material design guidelines for the development of next-generation energy storage solutions.
Researchers at the University of Seville have developed a bioinspired PEM fuel cell design that improves the distribution of liquid water inside these batteries. This approach has the potential to significantly enhance the efficiency and durability of PEM fuel cells, leading to more efficient and sustainable energy systems.
A team of researchers at Tohoku University has developed a novel visualization method to study the behavior of hydrogen atoms in alloys. They successfully filmed the flow of hydrogen atoms in pure nickel, revealing that they preferentially diffuse through grain boundaries with large geometric spaces.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
A new method has been developed to produce green hydrogen more efficiently and cheaply, using ruthenium particles and a solar-powered electrolytic system. The technology could reduce the costs of green hydrogen production on an industrial scale.
A new NSF-supported collaboration aims to improve liquid organic hydrogen carriers and use AI to identify novel approaches for a global renewable energy supply chain. The team is developing a new class of molecules, chemistries, and chemical processes to better store and transport green energy across the globe.
A new 'one-pot' method for producing palladium nanosheets could significantly improve the efficiency of clean energy production. This breakthrough enables the use of less rare metals, reducing environmental impact.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
A team of researchers developed a hexagonal BaTiO3−xNy oxynitride catalyst with basicity comparable to that of superbases. The substitution of nitride ions and oxygen vacancies into face-sharing Ti2O9 dimer sites increases the electron density, resulting in a highly basic catalyst.
Researchers developed a novel laser-induced hydrothermal reaction method to grow binary metal oxide nanostructures and layered-double hydroxides on nickel foams. This technique improves the production rate by over 19 times while consuming only 27.78% of the total energy required by conventional methods.
Researchers from China University of Petroleum apply terahertz spectroscopy to characterize oil shale's anisotropy, organic distribution, and fingerprint spectrum. The method enables simultaneous characterization of main oil generation zones and natural gas zones.
Aranet4 Home CO2 Monitor
Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.
The Telescope Array has detected the second-highest energy cosmic ray ever observed, with an energy equivalent to dropping a brick on your toe from waist height. The Amaterasu particle deepens the mystery of ultra-high-energy cosmic rays, which may follow particle physics unknown to science.
Scientists have developed a new method to create catalysts for hydrogen fuel cells, making them cheaper and more efficient. The breakthrough could lead to the widespread adoption of clean energy and reduce greenhouse gas emissions.
Researchers at Princeton University found that an ammonia economy can help achieve decarbonization goals, but it poses risks if not managed properly. The widespread use of ammonia could lead to significant emissions of nitrous oxide and nitrogen oxides, affecting air quality, water quality, and ecosystems.
Researchers at UNSW Sydney have developed a method to produce ammonia without high temperatures, pressures, and infrastructure. The new technique enhances energy efficiency and makes environmentally friendly ammonia economically feasible.
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
Researchers at Ruhr-University Bochum developed a method to increase oxygen stability of [FeFe] hydrogenase enzyme using site-directed mutagenesis, electrochemistry, X-ray crystallography and molecular dynamics simulations. Blockages in dynamic water channels near the H-cluster were found to improve oxygen resistance.
The Beckman Institute's DROPLETS project uses microdroplets to catalyze electrochemical reactions, producing clean hydrogen and sequestering carbon dioxide. The project aims to lay out a foundation for a sustainable clean energy future.
Kyushu University researchers have developed a new material that can store hydrogen energy for up to three months at room temperature, using an inexpensive element like nickel. This innovation could potentially reduce the cost of future compounds and contribute to the transition to alternative energy sources.
The University of Oklahoma's CHEPS project aims to co-develop socially just hydrogen energy technologies with local community representatives. The team will focus on clean and affordable hydrogen production, involving Tribal communities in their research and testing a co-creational approach to solving the country's energy challenges.
Apple MacBook Pro 14-inch (M4 Pro)
Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.
Lehigh University researchers have developed a technique using machine learning and advanced spectroscopy to characterize waste feedstocks for gasification-produced hydrogen. This process has the potential to eliminate hazards associated with stored coal waste and reclaim valuable resources, while also emitting fewer pollutants than tr...
The MIT team designed a train-like system of reactors that harnesses the sun's heat to produce clean hydrogen fuel with up to 40% efficiency. This could drive down costs and make solar thermochemical hydrogen (STCH) a scalable option for decarbonizing transportation.
The Pacific Northwest is launching a hydrogen energy hub with a $7 billion investment from the Department of Energy. PNNL's expertise will support the development of clean hydrogen production and integration with renewable energy sources in Washington, Oregon, and Montana.
Researchers at Lund University have demonstrated a method for converting isopropanol into hydrogen using a solid catalyst, paving the way for a liquid fuel that can be delivered at a pump. The process has the potential to reduce greenhouse gas emissions and could be used in larger vehicles such as buses and aircraft.
GQ GMC-500Plus Geiger Counter
GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.
Researchers have discovered a way to make solar hydrogen production economically viable by co-producing high-value chemicals like methylsuccinic acid. By coupling the photoelectrochemical (PEC) process with hydrogenation, the cost of hydrogen drops significantly, making it competitive with fossil gas.
The team developed poly(triphenyl piperidinium) based high-temperature proton exchange membranes with improved physicochemical properties, demonstrating enhanced proton conductivity and mechanical stability. The membranes showed promising performance in fuel cell applications, with the highest peak power density achieved at 210 °C.
Researchers have developed a hybrid silicon photocatalyst that efficiently produces hydrogen and high-value compounds using solar power. The non-toxic catalyst achieves an impressive rate of 14.2 mmol gcat−1 h−1, significantly higher than conventional silicon photocatalysts.
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.
A new catalyst designed by researchers at City University Hong Kong and tested by Imperial College London could boost renewable energy storage. The catalyst uses single atoms of platinum to produce an efficient but cost-effective platform for water splitting, paving the way for cheaper hydrogen production.
Researchers have demonstrated photochemical upconversion in a solid state, enabling potential innovations in renewable energy and water purification. The breakthrough could also enable targeted laser treatments for tumors and medical applications.
Researchers at Rice University have discovered a method to produce clean hydrogen gas from waste plastics using low-emissions technology. By utilizing rapid flash Joule heating, they can convert plastic waste into high-yield hydrogen and valuable graphene, which could offset the production costs of clean hydrogen.
Researchers at West Virginia University have developed a technology that can capture carbon dioxide from the air of buildings and use it to produce methanol, a common chemical with numerous applications. The process is expected to increase the sustainable supply of methanol while removing greenhouse gases from the atmosphere.
Apple AirPods Pro (2nd Generation, USB-C)
Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.
A research team at City University of Hong Kong has developed a highly efficient electrocatalyst that enhances hydrogen generation through electrochemical water splitting. The catalyst, composed of transition-metal dichalcogenide nanosheets with unconventional crystal phases, exhibits superior activity and stability in acidic media.
A team of researchers at UNIST has developed solid electrolyte materials utilizing metal-organic frameworks (MOFs) to improve the efficiency of hydrogen fuel cells. The new materials demonstrate high hydrogen ion conductivity and durability, holding promise for advancing sustainable energy solutions.
Researchers have created a highly efficient and stable photoelectrode for water splitting using organic semiconductors. The new design overcomes the limitations of traditional inorganic semiconductor-based photoelectrodes, resulting in enhanced hydrogen production efficiency.
Researchers have observed the decay of two neutron-rich isotopes, oxygen-28 and oxygen-27, providing new insights into nuclear structure. The study's findings suggest that these isotopes do not exhibit a closed shell structure, challenging current theories and offering opportunities for further investigation.
DJI Air 3 (RC-N2)
DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.
The study provides a condensed overview of recent advances and challenges in atmospheric and pressurized PVSRs, highlighting potential for improving performance through geometrical parameter optimization and spectrally selective absorption. Standardized evaluation methods remain essential to unlock the full potential of PVSRs.
A new study uses nonlinear partial differential equations to model the transportation of hydrogen-heterogeneous mixtures through pipeline systems, ensuring predictable operations. The research proposes injecting hydrogen gradually into existing natural gas pipelines to maximize their utility in reducing carbon-emitting fossil fuels.
Researchers developed a three-metal hybrid catalyst material featuring nickel, palladium, and platinum interfaces to enhance water splitting and hydrogen molecule generation. The new catalyst demonstrated significant stability and high catalytic activity, overcoming challenges of functional interferences.
University of Wisconsin-Madison researchers have developed a new approach to manufacturing ingredients for pharmaceuticals by combining hydrogen with electricity. This process is more sustainable than traditional methods, which use large quantities of zinc metal, generating environmentally unfriendly waste.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
Researchers at Gwangju Institute of Science and Technology have developed a novel mesoporous tantalum oxide-supported iridium nanostructure catalyst for efficient proton exchange membrane water electrolysis. The catalyst exhibits improved oxygen evolution reaction activity, stability, and cost-effectiveness.
Core-shell nanostructured Mg-based hydrogen storage materials show excellent kinetics and long-term cycling performances. They can absorb and desorb hydrogen at relatively low temperatures, reducing energy consumption in hydrogen storage and release. The materials have potential to improve Mg-based hydrogen storage systems for various ...
Researchers have developed a highly efficient organometal halide perovskite photoanode that suppresses internal and external losses associated with photoelectrochemical water splitting, enhancing reaction kinetics. The new design achieves an unprecedented applied bias photon-to-current conversion efficiency of 12.79%.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
Researchers discuss the potential of using ammonia as a hydrogen carrier for on-site power generation via ammonia decomposition. The high hydrogen content (17.6 wt%) and low toxicity make it an attractive alternative to traditional hydrogen storage methods, but challenges such as leakage and toxicity need to be addressed.
A joint research team from City University of Hong Kong and collaborators developed a stable artificial photocatalytic system that mimics natural chloroplasts to convert carbon dioxide into methane, a valuable fuel, very efficiently using light. The new system achieved a highly efficient solar-to-fuel efficiency rate of 15%, surpassing...
Scientists have synthesized proton-conductive membranes based on partially fluorinated aromatic ionomers, which exhibit high durability and ion conductivity. These membranes outperform existing ones in fuel-cell operation, chemical stability, and mechanical properties, paving the way for more powerful and affordable electric vehicles.
Creality K1 Max 3D Printer
Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.
Researchers develop a highly active, precious metal-free catalyst for ammonia decomposition. The new Ni-based catalyst outperforms conventional alternatives at lower temperatures, offering a promising solution for hydrogen production from ammonia.
Rice University engineers have created a device that converts sunlight into hydrogen with unprecedented efficiency, opening up new possibilities for clean energy and sustainable fuel production. The innovative technology uses halide perovskite semiconductors and electrocatalysts in a single, durable device.
Researchers have developed novel photocatalysts using layered metal-organic frameworks that exhibit improved charge separation properties. These materials are able to efficiently extract charges without structural defects, enabling record values in photocatalytic hydrogen production under visible light.
Researchers at West Virginia University are developing a hydrogen flexible boiler to decarbonize the food and beverage industry. The technology, proposed by Hailin Li, will supply thermal energy by burning clean fuel rather than traditional fossil fuels.
Researchers at Drexel University have developed a photocatalytic titanium oxide nanofilament material that can harness sunlight to unlock the potential of hydrogen as a fuel source. The material outperforms current methods and is stable for months, offering a sustainable and affordable path to creating hydrogen fuel.
Apple Watch Series 11 (GPS, 46mm)
Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.
The University of Surrey is involved in six national energy research centres, focusing on sustainable solutions for a greener future. Academics are developing hydrogen and ammonia as alternative fuels and boosting bioenergy production to reduce the UK's energy demand.
Cornell University researchers found that unused solar, wind, and hydroelectric power in the US could support the exponential growth of NFT transactions. The study suggests that harnessing this excess energy could reduce carbon emissions from NFT processing, which currently reach an equivalent of 0.37 megatons of CO2 per year.
Scientists at Argonne National Laboratory discovered a new fluoride electrolyte that can protect lithium metal batteries against performance decline. The electrolyte maintains a robust protective layer on the anode surface for hundreds of cycles, enabling the battery to last longer.
Researchers at Shibaura Institute of Technology have developed a faster way to synthesize CoSn(OH)6, a powerful catalyst required for high-energy lithium–air batteries. The new method uses solution plasma-based synthesis and achieves highly crystalline CSO crystals with improved catalytic properties.
Researchers at PNNL have developed a baking soda solution for storing hydrogen, addressing the challenge of long-duration energy storage. The study aims to advance the DOE's H2@Scale initiative and reduce the cost of hydrogen production.
GoPro HERO13 Black
GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.
A team of researchers from China and the UK has developed new ways to optimise the production of solar fuels by creating novel photocatalysts. These photocatalysts, such as titanium dioxide with boron nitride, can absorb more wavelengths of light and produce more hydrogen compared to traditional methods.
A low-cost catalyst developed by Argonne National Laboratory can produce clean hydrogen from water at a lower cost, making it an ideal choice for replacing fossil fuels and reducing greenhouse gas emissions. The new catalyst uses cobalt instead of expensive iridium, significantly reducing the cost and increasing efficiency.
Researchers at Penn State discovered that coal can act as a geological hydrogen battery, storing hydrogen for future use. The team found that coal's unique structure and properties make it an ideal material for hydrogen storage, with low-volatile bituminous coal performing best in tests.
Researchers from Tianjin University provide an insightful review of proton exchange membrane fuel cells (PEMFCs) for small-scale applications. The study highlights the unique attributes of PEMFCs, such as high energy densities and low pollution emissions, making them suitable for portable power generation, unmanned aerial vehicles, and...
Davis Instruments Vantage Pro2 Weather Station
Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.