Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Tunable single-mode lasing on a high-Q resonator

The researchers achieved ultranarrow linewidths and wavelength tunability in the lithium niobate microlaser, enabling applications like lidar and metrology. The single-mode lasing is realized through simultaneous excitation of high-Q polygon modes at both pump and laser wavelengths.

Nikon Monarch 5 8x42 Binoculars

Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.

Seeing photovoltaic devices in a new light

A team of researchers at Osaka University measured the photovoltaic properties of antimony sulfiodide:sulfide devices and discovered a novel effect. They found that changing the color of incident light from visible to ultraviolet induced a reversible change in output voltage, while leaving current unchanged.

Advances in lithium niobate photonics

Lithium niobate photonics has developed rapidly, enabling compact devices with high performance. Thin film lithium niobate (TFLN) structures have shown significant improvements in refractive index contrast, paving the way for more integrated photonic devices.

Diamonds are for quantum sensing

A team of researchers at the University of Tsukuba has developed a new method for measuring tiny changes in magnetic fields using nitrogen-vacancy defects in diamonds. This breakthrough could lead to more accurate quantum sensors and spintronic computers, enabling precise monitoring of temperature, magnetic, and electric fields.

More responsive phototransistors thanks to clean doping strategy

Researchers successfully developed neutron-transmutation doping for 2D layered Indium Selenide (InSe) phototransistors, narrowing the bandgap and increasing electron mobility. The technique improved responsivity by about fifty times, opening up new opportunities in materials-based technologies.

DJI Air 3 (RC-N2)

DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.

Complete photonic bandgap comes to silicon nitride slabs

A research group at South-Central MinZu University has achieved the largest complete photonic bandgap (CPBG) of 5.62% in a silicon nitride slab, significantly enhancing nonlinearity and enabling polarization multiplexing. The breakthrough could lead to the development of high-performance CPBG devices in SiN slabs.

Synthesis of two-dimensional holey graphyne

Researchers have successfully synthesized a new type of carbon allotrope called holey graphyne, which has semiconductor properties and can be used in various applications. The material was created using a bottom-up approach and consists of alternately linked benzene rings and C≡C bonds.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Organic polymeric scintillators excite X-ray community

Researchers developed efficient metal-free polymeric scintillators for high-resolution X-ray imaging, outperforming conventional anthracene-based scintillators. The polymers exhibit multicolor radioluminescence and high photostability, enabling applications in radiation detection, medical diagnosis, and security inspection.

A novel approach for designing efficient broadband photodetectors

Researchers develop novel broadband photodetectors expanding from deep ultraviolet to near infrared using CsPbCl3:Cer:Mn-LC, iodine-based perovskite quantum dots, and organic bulk heterojunction. The devices exhibit excellent performances with a wide response range, high responsivity, and detectivity, especially in UV and NIR regions.

Lightening up the nanoscale long-wavelength optoelectronics

Researchers have created a hybrid Dirac semimetal photodetector that captures low-energy photons with high sensitivity and efficiency. The device features excellent environmental stability and can generate photocurrent across a wide spectral regime.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

New nanomechanical oscillators with record-low loss

Scientists have created nanomechanical resonators with extremely high quality factors using a regular polygon design, leading to compact devices for sensing weak forces. The new design allows for precision force sensing with sensitivity approaching state-of-the-art atomic force microscopes.

Harnessing the powers of light to operate computers

Scientists at the University of Tsukuba have created a nanocavity in a waveguide that selectively modifies short light pulses, enabling the development of ultrafast optical pulse shaping. This breakthrough may lead to the creation of new all-optical computers that operate based on light.

Creality K1 Max 3D Printer

Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.

UVA-led research team pursues next big leap in radar and GPS systems

A UVA-led research team is working on a photonics-based radar and GPS system that can operate at frequencies up to 110 gigahertz, three times higher than current 5G systems. The system has the potential to provide ultra-stable signals for applications like communications, positioning, and ranging.

First integrated laser on lithium niobate chip

Harvard researchers have successfully integrated a high-power laser onto a lithium niobate chip, a major breakthrough in the development of high-performance chip-scale optical systems. The integration enables the creation of fully integrated spectrometers, optical remote sensing, and efficient frequency conversion for quantum networks.

Graphene gets enhanced by flashing

Rice University researchers have developed a customizing method for producing doped graphene with tailored structures and electronic states. The doping process adds elements to the 2D carbon matrix, making it suitable for use in nanodevices such as fuel cells and batteries.

Speed limit of computers detected

Scientists have discovered a speed limit for computer chips, with one petahertz being the maximum frequency for signal transmission. The research uses ultra-short laser pulses to create electrical currents in dielectric materials, allowing for faster data transmission.

Sky & Telescope Pocket Sky Atlas, 2nd Edition

Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.

Quantum physics sets a speed limit to electronics

Researchers investigated the shortest possible time scale of optoelectronic phenomena and found that it cannot be increased beyond one petahertz. The experiments used ultra-short laser pulses to create free charge carriers in materials, which were then moved by a second pulse to generate an electric current.

Meta Quest 3 512GB

Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.

2D materials under the microscope

Researchers review current research on 2D materials, highlighting their potential for quantum light sources and integrated circuits. The scientists also discuss recent advances in hybrid devices and scalable quantum photonic technologies.

Scientists weave atomically thin wires into ribbons

Researchers at Tokyo Metropolitan University have developed a scalable way to assemble nanowires into nanoribbons, a promising material for sophisticated electronic devices and catalysts. The method involves weaving together nanowires with chalcogen atoms and heat, resulting in atomically thin ribbons with unique properties.

GoPro HERO13 Black

GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.

Terahertz radiation source: Compact and simple

A novel, simple, and extremely compact terahertz radiation source has been developed at TU Wien, enabling high intensities and small size. The technology uses resonant-tunnelling diodes and can be used in various applications such as material testing, airport security control, radio astronomy, and chemical sensors.

UMass Lowell scientist pioneers new class of semiconductors

A new class of faster and more powerful semiconductors is being developed by UMass Lowell scientists to enhance wireless communication and digital imaging. The $1.7M NSF project aims to improve infrared optoelectronic devices, enabling better intracellular imaging, night vision, and quantum and 5G communication.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

Liquid crystals for fast switching devices

Researchers have created a new liquid crystal compound with ultra-short helix pitch and spiral ordering, making it ideal for fast-switching devices. The material's thermally and chemically stable structure allows for easy customization of pitch lengths.

A pair of gold flakes creates a self-assembled resonator

Scientists at Chalmers University of Technology discovered a way to create a stable resonator using two parallel gold flakes in a salty aqueous solution. The structure can be manipulated and used as a chamber for investigating materials and their behavior, with potential applications in physics, biosensors, and nanorobotics.

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.

Researchers light the way for organic glow-in-the-dark materials

Researchers from OIST and Kyushu University have developed a method to generate a glow-in-the-dark light using organic materials. The new method produces emissions that last for over one hour at room temperature, improving performance by tenfold compared to previous work.

Shifting colors for on-chip photonics

On-chip frequency shifters in the gigahertz range enable precise color shifting for high-speed optical communication. This innovation has significant implications for the development of quantum computers and future network infrastructure.

Ultrafast optical switching can save overwhelmed datacenters

Researchers have demonstrated ultrafast optical circuit switching for datacenters using integrated soliton microcombs, which can handle increasing bursty datacenter applications while reducing overheads. The proposed architecture employs a central comb system to improve power efficiency and reduce complexity.

Quantum dots enable infrared lasing at room temperature for silicon photonics

Colloidal quantum dot technology enables infrared lasing at room temperature, paving the way for low-cost solution-processed and CMOS integrated lasing sources. The breakthrough discovery may facilitate fully integrated silicon photonics, enabling lower power consumption, higher data rates, and multi-spectral 3D imaging capabilities.

New wireless photoelectric implant controls the activity of spinal neurons

Researchers have developed a revolutionary wireless photoelectric implant that can control the activity of spinal neurons, enabling the study of neural function and the development of new treatments for neurological disorders. The breakthrough technology uses pulses of light to stimulate or inhibit specific spinal-cord neurons, potenti...

Apple AirPods Pro (2nd Generation, USB-C)

Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.

Researchers to build skyrmion sensor with terahertz technology

A team of researchers at Aarhus University aims to develop an optical sensor using terahertz light to decode the direction of tiny magnetic 'tornadoes' called skyrmions. Skyrmions offer a promising candidate for future bits in computer technology, requiring less power and generating less heat than current methods.

NSF to fund revolutionary center for optoelectronic, quantum technologies

The Center for Integration of Modern Optoelectronic Materials on Demand will develop new semiconductor materials and scalable manufacturing processes for applications in displays, sensors, and quantum communication. The center aims to connect academic research with industrial and governmental needs, educating a diverse STEM workforce.

LED material shines under strain

Berkeley Lab researchers developed a method to increase the efficiency of LED devices by applying mechanical strain to thin semiconductor films. This approach reduces exciton annihilation, allowing for high-performance LEDs even at high brightness levels.

Novel AlN tunneling layer boost the graphene heterojunction photodetection

A novel engineered tunneling layer with enhanced impact ionization improves detection capabilities in graphene/insulator/silicon heterostructure photodetectors. The technique achieves a champion responsivity of ~1.03 AW-1 at a reverse bias of -10 V, showing great potential applications in sensing and communications.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

One-dimensional red phosphorous glows in unexpected ways

Researchers at Aalto University have discovered that fibrous red phosphorous, when electrons are confined in its one-dimensional sub-units, shows large optical responses. The material demonstrates giant anisotropic linear and non-linear optical responses, as well as emission intensity.

Fluke 87V Industrial Digital Multimeter

Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.