Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Glass's off-kilter harmonies

Researchers have discovered that localized vibrations in amorphous silicon dioxide contribute substantially to the material's thermal conductivity, contradicting previous assumptions. This breakthrough could lead to more efficient forms of everyday materials and even superconducting materials.

Nano-chimneys can cool circuits

Researchers found that adding cone-like structures between graphene and nanotubes enhances heat dissipation by reducing the number of heptagons. This could lead to improved performance in next-generation nano-electronics.

When crystal vibrations' inner clock drives superconductivity

Physicists adapt BCS theory to externally drive phonon interaction, elevating critical temperature and creating higher-temperature superconductors. Theoretical approach reveals controlled elevation of critical temperature through time-averaging procedure.

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.

It's official: Phonon and magnon are a couple

Researchers have observed and quantified the coupling of phonons and magnons in crystals of antiferromagnet manganite (Y,Lu)MnO3. This discovery challenges a 100-year-old physical problem and deepens knowledge of multiferroics, materials that exhibit multiple types of order simultaneously.

Spiders spin unique phononic material

Scientists at Rice University found a phonon band gap in spider silk, enabling the material to block certain frequencies of sound waves. This discovery has implications for creating tunable, dynamic metamaterials with novel sound or thermal insulation properties.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

A new tool measures the distance between phonon collisions

A new experiment by MIT engineers provides a more nuanced picture of heat production in microelectronics. The researchers devised an experiment to measure the mean free path distribution of phonons, which reveals that classical diffusion theory underestimates temperature rise at extremely small length scales.

Rice scientists use light to probe acoustic tuning in gold nanodisks

Researchers at Rice University have developed a method to fine-tune the acoustic response of nanoparticles by varying the thickness of their attachment layer, opening doors for new applications in photonics and wireless communications. This breakthrough uses ultrafast laser pulses to induce atomic vibrations in gold nanodisks.

Phonons, arise!

Researchers at Sandia National Laboratories have found a way to alter the thermal conductivity of widely used material PZT using a small electric voltage. This breakthrough could lead to new technologies where controlling phonons is necessary, and has potential applications in computing, global communications, and other fields.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

Tunneling across a tiny gap

Heat flow between materials separated by less than a nanometer occurs not via radiation or conduction, but through phonon tunneling. Researchers developed a unified framework to calculate heat transport at finite gaps, explaining how phonons can

Landmark study proves that magnets can control heat and sound

Researchers at Ohio State University have discovered a way to control heat with magnetic fields, using acoustic phonons to steer heat magnetically. This breakthrough opens up new possibilities for energy manipulation, potentially allowing for the control of sound waves as well.

Squeezing out new science from material interfaces

Scientists at the University of Illinois have determined the physical process dominating heat flow between metals and diamond, challenging previous theories. By applying extreme pressure to metal films on diamond, researchers found that phonons can 'feed' a higher frequency diamond phonon, regardless of metal stiffness.

Heat transfer sets the noise floor for ultrasensitive electronics

A team of engineers and scientists has identified a source of electronic noise that could impact the functioning of instruments operating at very low temperatures. At around 20 kelvins, phonon modes become deactivated, allowing high-energy phonons to carry away heat and causing devices to heat up.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Good vibrations give electrons excitations that rock an insulator to go metallic

Researchers at Oak Ridge National Laboratory quantify thermodynamic forces driving metal-insulator transition in vanadium dioxide, finding phonons and atomic vibrations control phase stability. The discovery has implications for multifunctional materials, including colossal magnetoresistors, superconductors, and ferroelectrics.

Manipulating and detecting ultrahigh frequency sound waves

Researchers have demonstrated a technique for producing acoustic phonons at 10 GHz, promising unprecedented resolution for acoustic imaging. The team used nanostructures to generate and detect the phonons, which can be used to 'see' subsurface structures in nanoscale systems.

Thermal conductance can be controlled like waves using nanostructures

Scientists at the University of Jyväskylä, Finland, have demonstrated that it's possible to change a material's thermal conductance by tuning the wave-like properties of heat flow. By fabricating a nanoscale mesh structure, they were able to reduce phonon thermal conductance by almost an order of magnitude.

Crossover sound

Scientists at Berkeley Lab have provided the first 'unambiguous demonstration' of phonon-based lasers by observing coherent phonon transport in superlattices. This breakthrough could lead to new advances in heat transfer applications and the development of phonon lasers.

Research could bring new devices that control heat flow

Researchers have discovered a way to control heat flow using tiny triangular structures that can 'thermal rectify', allowing for greater flow of heat in one direction. The technology has potential applications in thermal management, electronics, and textiles.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

Professor wins medal for graphene research

Professor Alexander Balandin receives MRS Medal for his groundbreaking work on graphene's thermal properties and development of a new materials characterization technique. His discoveries have led to major advances in understanding phonon transport and the application of graphene in heat removal and thermal management.

Apple iPad Pro 11-inch (M4)

Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.

How to treat heat like light

Researchers at MIT have developed a novel method to manipulate heat by employing engineered materials with nanostructured semiconductor alloy crystals. This approach enables the concentration of heat phonons within a specific frequency range, allowing for control over heat flow similar to light waves.

Controlling heat flow through a nanostructure

A new study reveals that heat can travel like waves, not particles, through superlattices, allowing for precise control over heat flow. This discovery opens the possibility of creating materials with tailored thermal properties for thermoelectric devices and improved cooling of electronic chips.

Quantum information motion control is now improved

Physicists have devised a new method to handle vibrations' effect on electron transport, improving qubit information transfer. The model simulates closer control over phonons and electrons, enabling stronger coupling regimes.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Columbia engineering team discovers graphene's weakness

A Columbia University engineering team has discovered how pure graphene breaks under tensile stress, revealing a novel soft-mode phonon instability that leads to mechanical failure. This finding is significant for understanding the behavior of low-dimensional systems like graphene and could lead to new ways to engineer its properties.

Caltech researchers design a new nanomesh material

Researchers at Caltech have developed a new type of material made out of silicon that could lead to more efficient thermoelectric devices. The material is composed of a thin film with a grid-like arrangement of tiny holes, which slows down phonons and lowers its thermal conductivity.

Quantum leap for phonon lasers

Researchers have made significant breakthroughs in developing practical phonon lasers, which could enable new medical imaging devices and precision measurement tools. Two separate teams, one in the US and the UK, have reported advancements in phonon laser development, using different approaches to overcome technical challenges.

Researchers putting a freeze on oscillator vibrations

University of Oregon physicists have developed a technique to slow down mechanical fluctuations in optomechanical oscillators, reducing phonon excitations to near 40 quanta. The goal is to reach the quantum mechanical ground state with minimal excitation, enabling precise nanotechnology measurements.

Los Alamos scientists see new mechanism for superconductivity

Researchers at Los Alamos National Laboratory have proposed a new explanation for superconductivity that doesn't rely on phonons. By introducing quantum fluctuations and pressure changes, they observed a quantum critical point where electrons pair up in a previously undescribed state of matter.

Meta Quest 3 512GB

Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.

Size-specific cracking shakes

Scientists have found that certain nanostructures are more susceptible to failure by fracture at specific sizes. This is due to phonon confinement, which affects thermal transport and electronic processes. The study provides valuable information for designing stable nanostructures with reduced fracture energy.

A phonon floodgate in monolayer carbon

Scientists at Berkeley Lab have discovered an unexpected gap-like feature in graphene's energy spectrum, attributed to phonon interactions. This finding opens new possibilities for graphene nanodevices and applications.

The quest for a new class of superconductors

Researchers propose new mechanism for superconductivity in materials without phonon interaction, potentially leading to higher temperatures. This discovery could pave the way for a new class of high-temperature superconductors.

GoPro HERO13 Black

GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.

Reversible data transfers from light to sound

A team of researchers at Duke University has successfully transferred encoded information from a laser beam to sound waves and back again, opening the door for ultra-fast optical communications networks. The new method uses stimulated Brillouin scattering to create acoustic vibrations that can retain data for brief intervals.

New insights into high-temperature superconductors

Researchers found that pressure and oxygen isotopes have a similar effect on electronic properties of high-temperature superconductors, with vibrations in the lattice structure playing a crucial role in their superconductivity. The study reveals new insights into the behavior of these mysterious materials.

Infrared antenna for nano-size mapping of crystal vibrations

Researchers create near-field infrared microscope to visualize crystal vibrations in the nanometre range. The technique uses infrared light to enhance signal intensity at the tip of a scanning probe needle, revealing phonon resonance in silicon carbide crystals 200-fold brighter than gold.