Researchers developed a new method to model microgrids using Hybrid Petri Net (HPN), allowing for efficient operation under various conditions. This analysis helps engineers estimate time and cost required for grid component switching, enabling improved microgrid design.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
Researchers at NREL discovered a method to stabilize an all-inorganic perovskite material at room temperature, increasing its stability and efficiency. The new solar cells convert sunlight into electricity with 10.77 percent efficiency, surpassing other reported all-inorganic perovskite solar cells.
Scientists at OIST Graduate University have developed a technique to visualize electrons in a material, allowing them to study the dynamic of electron movement and its effects on semiconductor devices. By creating a video of electron motion, researchers can now describe the phenomenon without interpreting data.
Researchers at UNIST developed a new type of organic solar cell that maintains up to 80% of its initial efficiency after 60 days in high-temperature conditions. The team used a macromolecular additive to improve and stabilize the device performance, yielding unprecedented power conversion efficiency.
Scientists have made a significant advance toward more practical, environmentally friendly solar cells using inexpensive halide perovskite materials. The new cells have a power conversion efficiency of 15 percent and contain 60% less lead than traditional cells, representing a major step towards sustainable energy solutions.
Efficient organic solar cells have been created using a non-fullerene material, achieving high energy efficiency rates of up to 9.5%. This breakthrough indicates that the intrinsic limitations of organic solar cells are comparable to other photovoltaic technologies, paving the way for commercialization.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
Scientists at Oxford University have developed a non-toxic solvent system that can be used to manufacture perovskite solar cells, overcoming a major barrier to their commercialization. The clean solvent quickly crystallizes perovskite films at room temperature, making it suitable for coating large solar panels.
Researchers at OIST have made significant breakthroughs in perovskite solar cells, improving efficiency, stability, and scalability. New post-annealing treatments and manufacturing methods have increased conversion efficiency to 18.4%, while discovering new decomposition products has led to the development of more stable materials.
Researchers developed a transparent metal electrode with improved efficiency, using fractal-like nano-features inspired by leaf veins. The new design combines low surface coverage and ultra-low resistance, surpassing conventional indium tin oxide layers.
Apple MacBook Pro 14-inch (M4 Pro)
Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.
Researchers at MIT have developed a new solar cell that combines two layers to harvest more of the sun's energy, reaching theoretical efficiencies above 40 percent. The device can be manufactured at a fraction of the cost due to a novel low-cost manufacturing process, making it ready for commercialization within the next year or two.
Researchers at MIT and SUTD used light to print 3D structures that can remember their original shapes after being stretched, twisted, and bent. The structures can be printed with micron-scale features and have potential applications in biomedical devices, soft robotics, and solar panel tracking.
Researchers from NIST discovered a 'sweet spot' for mass-producing polymer solar cells, exceeding 9.5% power conversion efficiency, without sacrificing performance. The findings suggest that high-volume production methods can yield efficient photovoltaic devices with greater structural variability.
Karlsruhe researchers created a new piggyback structure for metal-organic frameworks that enables photon upconversion, transforming low-energy photons into high-energy photons. This process has potential applications in solar cells and LEDs, increasing efficiency and reducing limitations.
A team of scientists has discovered a class of materials that can surpass the Shockley-Queisser limit, allowing for more efficient solar cell conversion. By using a barium titanate crystal, they were able to extract power from a small portion of the sunlight spectrum with higher efficiency than previously thought possible.
GoPro HERO13 Black
GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.
Researchers at University of Wisconsin-Madison have created high-performance, micro-scale solar cells that outshine comparable devices in key performance measures. The new, small cells capture current from charges moving side-to-side and generate significantly more energy than other sideways solar systems.
Scientists at ORNL discover the optimal ratio of selenium in cadmium-tellurium solar cells, increasing efficiency from 22% to near-theoretical levels. The alloy composition of 50% cadmium, 25% tellurium and 25% selenium performed best.
Researchers from Aalborg University have developed a heat-resistant device made of tungsten and alumina layers that can absorb sunlight across a broad spectrum, enabling more efficient energy conversion. The device can operate at high temperatures and absorb light from UV to near-infrared wavelengths.
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.
Researchers at the University of Illinois Chicago have developed a solar cell that captures CO2 and sunlight to produce hydrocarbon fuel. The 'artificial leaf' technology solves two crucial problems simultaneously by converting atmospheric carbon dioxide into fuel, making it a game-changer for energy production.
Researchers at OU are developing novel technologies for next-generation solar cells with potential to increase global energy capacity and reduce fossil fuel dependence. They aim to control thermal losses and harness more of the sun's energy using 'hot' carrier solar cells.
Researchers found that moisture in the air enhances perovskite solar cells' performance by redistributing a dopant, increasing electric properties. However, prolonged exposure to moisture can be detrimental.
The researchers successfully created dye-sensitized solar cells with inkjet-printed photovoltaic dyes, achieving efficiency and durability comparable to traditional methods. The printed solar cells endured over 1,000 hours of continuous light and heat stress without degradation.
Researchers have made significant breakthroughs in perovskite solar cells by developing a hydrophobic conducting polymer that improves efficiency and stability without additives. The new cells retain high performance over two months in humid conditions, paving the way for commercialization.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
Researchers at Lund University have measured the flow of solar energy within and between different parts of a photosynthetic organism, revealing more efficient routes for transporting energy. This basic research could lead to the development of more efficient solar cell technologies.
Researchers have identified a new organic molecule that converts a large amount of sunlight, enabling the development of stable solar cells with high efficiency. The new technology offers several benefits, including lower production costs and increased flexibility.
Researchers have developed a new type of two-dimensional layered perovskite with outstanding stability and more than triple the material's previous power conversion efficiency. The breakthrough involves flipping crystals during casting, eliminating a gap in electron flow that previously reduced efficiency.
Scientists at Berkeley Lab have discovered a possible secret to dramatically boosting the efficiency of perovskite solar cells, potentially increasing conversion rates up to 31 percent. The discovery involves exploiting the unique properties of facets on individual grains in the crystalline material.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
Scientists have created a tiny, soft, and wirelessly functional biomaterial that can be injected into the body to stimulate nerve cells and manipulate muscle behavior. The material degrades naturally after a few months, eliminating the need for surgery.
Researchers at KIT replicated the structure of rose petal epidermal cells to improve light-harvesting and generate more power. The transparent replica integrated into an organic solar cell resulted in a 12% efficiency gain, making it a promising approach for future solar cells.
Researchers in South Korea have developed ultra-thin photovoltaics with a record-breaking flexibility, allowing them to wrap around small objects. The new method uses transfer printing instead of etching and produces flexible solar cells with a smaller amount of materials.
Researchers at ICFO have developed a solution-processed, semi-transparent solar cell based on AgBiS2 nanocrystals, which are non-toxic and abundant. The cells achieved power conversion efficiencies of 6.3%, competing with current thin film technologies, and offer potential as a low-cost alternative to traditional solar cells.
Researchers at the University of Bristol have developed a new generation of high-efficiency solar thermal absorbers using a tri-layer metasurface absorber. The system uses amorphous carbon as an interlayer between thin gold films, strongly absorbing light across the solar spectrum while minimizing emission of thermal radiation.
Nikon Monarch 5 8x42 Binoculars
Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.
A new nanomaterial has been developed that is both transparent and highly conductive to electric current. The material, created through a cheap and simple method, has potential applications in roll-up touchscreen displays, wearable electronics, flexible solar cells, and electronic skin.
Researchers have developed perovskite solar cells with an average efficiency of 19.6% and a record-breaking aperture area of 1 cm2, overcoming scalability limitations. The new technique eliminates impurities and grain boundaries, resulting in highly oriented crystalline films.
University of Oregon scientists have synthesized a stable biradical compound with two free-flowing, non-bonding electrons. The molecule can change its bonding patterns to a magnetic state when heated, but returns to a fully bonded non-magnetic closed state at room temperature.
EPFL researchers have achieved the highest performance ever measured for larger-size perovskite solar cells, reaching over 20% efficiency. This breakthrough could lead to increased efficiency in hybrid solar panels that combine perovskites with silicon, potentially exceeding 30% efficiency.
Researchers at UC San Diego, MIT, and Harvard have engineered 'topological plexcitons,' energy-carrying particles that enhance exciton energy transfer, leading to improved solar cells and miniaturized optical circuits. The discovery provides a directionality feature for efficient energy distribution in nanoscale materials.
Davis Instruments Vantage Pro2 Weather Station
Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.
Researchers at Hokkaido University created all-solid-state solar cells that are highly durable and can efficiently convert sunlight into energy. The devices were made using atomic layer deposition and featured a gold nanoparticle antenna.
Researchers at ORNL have demonstrated a scalable method to produce semiconducting nanoparticles using bacteria-fed sugar at temperatures below 150 degrees Fahrenheit. This approach reduces production costs by approximately 90 percent compared to conventional methods, making it attractive for applications in electronics, displays, solar...
Researchers at UNSW have developed a new solar cell configuration that delivers a world-record 34.5% efficiency in sunlight-to-electricity conversion, nudging closer to the theoretical limits of such devices. The device uses a four-junction mini-module with a hybrid receiver to extract maximum energy from unfocussed sunlight.
Sky & Telescope Pocket Sky Atlas, 2nd Edition
Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.
Researchers at Los Alamos National Laboratory found that perovskite solar cells degrade due to accumulated charge carriers and self-heal when exposed to darkness. Temperature control can stabilize device performance by reducing degradation mechanisms.
Scientists at Penn State University have developed a new high-pressure technique to create large-area thin-film silicon semiconductors at low temperatures in simple reactors. This approach could make large, flexible semiconductors more feasible for applications like flat-panel monitors and solar cells.
Researchers recommend increased subsidies and public funding to help Taiwanese solar producers develop advanced technology and compete globally. The study highlights the need for policymakers to encourage collaboration between academics and industry experts to drive innovation.
Apple AirPods Pro (2nd Generation, USB-C)
Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.
A team at the University of New South Wales has achieved the world's highest efficiency rating for a full-sized thin-film solar cell using CZTS technology. The innovation uses abundant materials and is non-toxic, making it suitable for widespread use in buildings.
Researchers at Brown University have developed a new method to convert one type of perovskite into another, improving thermal stability and light absorption. The technique uses gas-based methods to flip the chemical switch, preserving the microstructure and morphology of the material.
Researchers observed defects forming during CIGSe solar cell fabrication and found that excess copper helps reduce defects. The study suggests that the copper-rich phase plays a crucial role in eliminating defects, regardless of temperature.
A team of chemists has developed a unique combination of PBDB-T and ITIC that converts sunlight into electricity with an efficiency of 11%, surpassing most solar cells with fullerenes. The discovery paves the way for low-cost and reliable solar energy, with good thermal stability and potential for commercialization.
Sony Alpha a7 IV (Body Only)
Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.
Researchers have discovered a new metamaterial that radiates heat in specific directions, making it ideal for use with thermophotovoltaic cells. This breakthrough could lead to highly efficient cells that harvest heat from surroundings and convert it into electricity.
Researchers at Oak Ridge National Laboratory synthesized a stack of monolayers of two lattice-mismatched semiconductors, gallium selenide and molybdenum diselenide. The achievement demonstrates the promise of synthesizing mismatched layers to enable new families of functional two-dimensional materials.
A team has directly observed the cause for the missing efficiency in zinc oxide-based dye-sensitised solar cells. Interface states trap charge carriers, reducing efficiency levels.
Fluke 87V Industrial Digital Multimeter
Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.
ORNL researchers have found a potential path to improve solar cell efficiency by understanding the competition among halogen atoms during perovskite synthesis. The study reveals that bromine, chlorine, and iodine ions facilitate growth but only iodine gets into the final crystal structure.
Researchers at Stanford University found that applying pressure can increase the voltages of perovskite solar cells and enhance their electronic conductivity. This discovery holds promise for advancing low-cost tandem solar cells.
Researchers at NREL and SLAC pinpoint the chemical and physical changes that occur during the firing step in silicon solar cell manufacturing. They found that between 500-650 degrees Celsius, lead oxide etches the antireflective coating on the solar cell, while above 650 degrees, silver dissolves into the molten glass frit.
Researchers used X-rays to observe exactly how silver electrical contacts form during manufacturing, shedding light on the complex process. The results show that lead oxide plays a key role in forming the contact, etching away the solar cell's antireflective coating and allowing silver to move through and harden.
Aranet4 Home CO2 Monitor
Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.
Researchers have successfully demonstrated a strong non-contact heat transfer channel using light, achieving near-field radiative heat transfer between parallel objects at nanoscale distances. The team's approach has the potential to revolutionize energy conversion applications by converting wasted heat from combustion engines back to ...
Renowned researcher D. Yogi Goswami has been awarded the 2016 Böer Solar Energy Medal of Merit for his significant pioneering contributions to solar energy. His work focuses on reducing costs and developing efficient, effective storage methods for solar energy.
Scientists have developed transparent wood that can be used in building materials, potentially saving homeowners money on artificial lighting costs. The material, which is stronger than Plexiglass, still traps some light and may boost the efficiency of solar cells.
Meta Quest 3 512GB
Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.
Researchers have developed a stable and conductive protective layer for the 'artificial leaf' that enhances water oxidation efficiency. The innovative layer, made from ruthenium dioxide nanoparticles and an organic polymer, improves current densities and stability.
Scientists at Helmholtz-Zentrum Berlin developed a protective layer for the 'artificial leaf' that converts 12% of incident solar energy into hydrogen. The new layer, made from graphene, enables stable and efficient water splitting.
Scientists discovered that surface vibrations in nanomaterials significantly affect their behavior, impacting applications such as solar cells. The researchers found that suppressing these vibrations can lead to higher photocurrent and efficiency in solar cells.
The Office of Naval Research awarded $25 million to 47 young investigators for their promising basic research in various naval-relevant fields. The awardees will receive funding for laboratory equipment, graduate student stipends and scholarships.