Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

A step toward practical photonic quantum neural networks

Researchers introduced a method to make photonic circuits more adaptable without sacrificing compatibility, enabling the creation of practical photonic quantum neural networks. The approach achieved a classification accuracy above 92 percent in experimental tests, demonstrating its potential.

High-frequency molecular vibrations initiate electron movement

A team of scientists observed the earliest steps of ultrafast charge transfer in a complex dye molecule, with high-frequency vibrations playing a central role. The experiments showed that these vibrations initiate charge transport, while processes in the surrounding solvent begin only at a later stage.

First electronic–photonic quantum chip created in commercial foundry

Researchers from Boston University and Northwestern University develop a system that integrates quantum light sources and control electronics on a single piece of silicon, creating reliable streams of correlated photon pairs. The advance enables mass-producible 'quantum light factory' chips and large-scale quantum systems.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Boson sampling finds first practical applications in quantum AI

Researchers from OIST develop new quantum AI method for image recognition based on boson sampling, achieving highly accurate results without complex training. The approach uses a linear optical network and preserves information, outperforming classical methods in various datasets.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers create a new thermal emitter that achieves efficiencies of over 60% despite practical design constraints, opening possibilities for more sustainable industrial processes and renewable energy growth. The technology could inform the development of grid-scale alternative storage solutions and power space applications.

Georgia State discovery provides insight Into behavior of electrons

A team of researchers has discovered novel and unexpected phenomena when studying fractional quantum Hall effects in flatland systems. By applying a supplementary current to high mobility semiconductor devices, they were able to explore new non-equilibrium states of these quantum systems and reveal entirely new states of matter.

A 2D device for quantum cooling

Researchers at EPFL's Laboratory of Nanoscale Electronics and Structures have fabricated a device that efficiently converts heat into electrical voltage at temperatures lower than outer space. The innovative device exploits the Nernst effect, a complex thermoelectric phenomenon, to achieve unprecedented performance.

Creality K1 Max 3D Printer

Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.

Sorting complex light beams: A breakthrough in optical physics

A groundbreaking study introduces a method for sorting vector structured beams with spin-multiplexed diffractive metasurfaces, promising significant advancements in optical communication and quantum computing. This technology enables precise control over complex light beams, opening new avenues for scientific exploration.

The world is one step closer to secure quantum communication on a global scale

Researchers at the University of Waterloo have created a novel quantum dot source that produces near-perfect entangled photons, a crucial step towards global-scale secure quantum communication. This achievement combines two Nobel Prize-winning concepts and has significant implications for quantum key distribution and quantum repeaters.

Nikon Monarch 5 8x42 Binoculars

Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.

Bringing quantum computing to light

Researchers explore quantum optical technology to solve scalability and accuracy issues in quantum computing, aiming to develop new drugs faster and more efficiently. Photon-based systems offer a solution by reducing physical components, increasing opportunities for scaling and stability.

Quantum batteries break causality

Researchers from the University of Tokyo have developed a new way to charge quantum batteries using optical apparatuses and the phenomenon of indefinite causal order. This approach enables significant gains in energy storage and thermal efficiency, even with lower power chargers.

Self-correcting quantum computers within reach?

A Harvard team has successfully developed a self-correcting quantum computer using neutral atom arrays, achieving near-flawless performance with extremely low error rates. The breakthrough enables the creation of large-scale, error-corrected devices based on neutral atoms.

Davis Instruments Vantage Pro2 Weather Station

Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.

A linear path to efficient quantum technologies

Researchers have demonstrated a way to perform Bell-state measurements with an efficiency exceeding the commonly assumed upper theoretical limit. This breakthrough opens up new perspectives for photonic quantum technologies and could lead to more efficient quantum computing, communication, and sensor devices.

Absolute vs. relative efficiency: How efficient are blue LEDs, actually?

Researchers at University of Illinois Urbana-Champaign found that the absolute internal quantum efficiency (IQE) of InGaN-based blue LEDs can be as low as 27.5%, drastically lower than the standard assumption. The study's results suggest a new approach to measuring IQE, providing a more accurate picture of LED performance.

Fluorescent aromatic nanobelts with unique size-dependent properties

Researchers at Nagoya University have synthesized methylene-bridged [n]cycloparaphenylenes ([n]MCPPs) with varying ring sizes, exhibiting unique properties such as fluorescence and paratropic belt currents. The discovery has significant implications for studying magnetic properties of aromatic nanobelts.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

Shedding light on quantum photonics

Researchers at the University of California, Santa Barbara (UCSB) have made a breakthrough in generating single photons on-chip using a new method. The team, led by Kamyar Parto, has successfully created a steady and fast stream of single photons essential for photonic-based quantum technologies.

Organic X-ray excitement for innovative imaging

KAUST researchers have designed and built novel organic scintillator materials for detecting X-rays at low doses, overcoming stability issues with existing ceramic or perovskite materials. The new approach uses heavy atoms to improve X-ray absorption capability and exciton utilization efficiency.

Into the blue: Progress in perovskite LEDs for deep-blue light

Scientists have created a novel approach to produce phase-pure quasi-2D Ruddlesden–Popper perovskites, enabling highly efficient and spectrally stable deep-blue-emissive perovskite LEDs. The rapid crystallization method yields high-performance devices with an emission wavelength centered at 437 nm.

Dawn of solid-state quantum networks

Researchers demonstrated high-visibility quantum interference between two independent semiconductor quantum dots, an important step toward scalable quantum networks. The observed interference visibility is up to 93%, paving the way for solid-state quantum networks with distances over 300 km.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

University of Ottawa researchers solve 20-year-old optical light mystery

Researchers at the University of Ottawa have developed a new technique to differentiate the mirror images of a chiral molecule, a problem that was believed to be unsolvable for nearly 20 years. The team used linear polarized helical light beams to enhance sensitivity and observed differential absorption in achiral molecules.

Nanocrystals store light energy and drive chemical reactions

Researchers have introduced novel ZnSe/ZnS quantum dots that efficiently drive challenging organic transformations with low toxicity. The secret to their success lies in their core/shell structure and variable coatings that can store light energy.

Entangled photons tailor-made

Researchers at the Max Planck Institute have successfully generated up to 14 entangled photons using a single atom, enabling efficient creation of quantum computer building blocks. This breakthrough could facilitate scalable measurement-based quantum computing and enable secure data transmission over greater distances.

Quantum light clarifies bioimaging

Researchers at Texas A&M University created a device that harnesses quantum fluctuations to enhance spectroscopy results in Brillouin microscopy, increasing image clarity and accuracy. The new source significantly improves the signal-to-noise ratio, allowing for better visualization of biological structures and properties.

Getting more out of light

Scientists at KAUST have successfully created a semiconductor material with multiple exciton generation, resulting in a photocurrent quantum efficiency of over 100%. This breakthrough could lead to improved solar cells and light-harvesting applications.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

A boost in performances in fibre-integrated quantum memories

Researchers have demonstrated a significant improvement in fibre-integrated quantum memories, achieving an entanglement storage time of over 1000 microseconds. The fully integrated device enables the use of sophisticated control systems, allowing for improved scalability and compatibility with telecommunications infrastructure.

UIC joins national quantum computing center

The University of Illinois Chicago has joined the Co-design Center for Quantum Advantage, a US Department of Energy-funded center focused on building scalable quantum computer systems. The partnership will open new opportunities for UIC students in quantum engineering and collaboration with researchers.

Sky & Telescope Pocket Sky Atlas, 2nd Edition

Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.

Measuring tiny quantum effects with high precision

A research team at POSTECH has developed a weak-value amplification method to achieve quantum metrology precision without using entangled resources. This breakthrough enables the practical use of quantum metrology by verifying that entanglement is not an absolute requirement for reaching the Heisenberg limit.

Wide-visible-light-responsive photocatalyst boosts solar water splitting

Researchers from Dalian Institute of Chemical Physics developed a highly efficient Z-scheme OWS system, achieving benchmarked apparent quantum efficiency and solar-to-hydrogen energy conversion efficiency over particulate inorganic semiconductor photocatalysts driven by visible light. The system utilizes Ir as reduction cocatalyst and ...

How big does your quantum computer need to be?

Researchers developed a tool to determine the minimum quantum computer size needed to solve problems like breaking Bitcoin encryption and simulating molecules. The estimated requirement ranges from 30 million to 300 million physical qubits, suggesting Bitcoin is currently safe from a quantum attack.

DJI Air 3 (RC-N2)

DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.

Physicists reveal non-reciprocal flow around the quantum world

Physicists from Exeter and Zaragoza develop a theory to engineer non-reciprocal flows of quantum light and matter, paving the way for novel devices with directional character. This breakthrough may lead to the creation of quantum technologies requiring efficient, directional energy transfer.

How monitoring quantum Otto engine affects its performance

A new monitoring protocol preserves coherence in quantum Otto engines, leading to improved power output and reliability. The 'repeated contacts scheme' avoids measurement-induced quantum effects, making the engine more capable and dependable.

Photonic chip is key to nurturing quantum computers

A team of researchers at Bristol's Quantum Engineering and Technology Labs has developed a silicon photonic chip that can protect quantum bits from errors using photons. This breakthrough could lead to the creation of more powerful quantum computers by reducing the fragility of qubits.

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

3D printed micro-optics for quantum technology

Researchers developed a method to enhance collection efficiency of single QDs using 3D printed micro-lenses, achieving intensity enhancements up to 2.1 and 26% in fibre-coupling validation. A standalone fibre-coupled device was also realised, opening the route to stable stand-alone devices.

Shedding light on perovskite films

Scientists from KIT's Institute of Microstructure Technology and Light Technology Institute have developed a new model to calculate photoluminescence quantum efficiency of perovskite films. The results reveal that the actual efficiency is significantly lower than previously estimated, with an estimated 78% compared to predicted 90%. Th...

Finding quvigints in a quantum treasure map

Physicists at the University of Queensland have created a new method for finding unknown quantum states, called self-guided tomography, which enables them to locate quvigints more quickly and accurately in high dimensions. This technique uses machine learning to pick directions, collect data, and process it to find the target state.

Aranet4 Home CO2 Monitor

Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.

Research could dramatically lower cost of electron sources

Researchers at Rice University and Los Alamos National Laboratory have discovered a technology to make electron sources from halide perovskite thin films, efficiently converting light into free electrons. The cost savings come from abundant and inexpensive raw materials and a simpler manufacturing process.