Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Entangled photons tailor-made

Researchers at the Max Planck Institute have successfully generated up to 14 entangled photons using a single atom, enabling efficient creation of quantum computer building blocks. This breakthrough could facilitate scalable measurement-based quantum computing and enable secure data transmission over greater distances.

Master equation to boost quantum technologies

Physicists have developed a 'master equation' to understand feedback control at the quantum level, enabling precise real-time control over quantum systems. This breakthrough has the potential to revolutionize quantum technologies by exploiting quantum effects and mitigating fragile system properties.

Preparing for a tech revolution

The University of Delaware and the University of New Mexico are collaborating on a $4 million grant to develop quantum photonics technologies. This initiative aims to prepare a skilled workforce for the growing quantum computing market, projected to grow from $486 million in 2021 to $3.2 billion by 2028.

Creality K1 Max 3D Printer

Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.

A new connection between topology and quantum entanglement

Researchers from the University of Pennsylvania establish a relationship between topology and entanglement, tying two major principles in physics together. The connection reveals that the genus of the Fermi surface is closely related to a measure of quantum entanglement called mutual information.

A key role for quantum entanglement

Researchers demonstrate device-independent quantum key distribution using quantum entanglement, paving the way for secure communication. The breakthrough ensures security without relying on the eavesdropper's computational power.

HKU physicists found signatures of highly entangled quantum matter

A research team from HKU discovered clear evidence of a highly entangled quantum matter, known as a quantum spin liquid (QSL), through large-scale simulations on supercomputers. The findings suggest the existence of QSLs in nature and provide new insights into topological order and quantum entanglement.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

A boost in performances in fibre-integrated quantum memories

Researchers have demonstrated a significant improvement in fibre-integrated quantum memories, achieving an entanglement storage time of over 1000 microseconds. The fully integrated device enables the use of sophisticated control systems, allowing for improved scalability and compatibility with telecommunications infrastructure.

Quantum physics: Record entanglement of quantum memories

Physicists have successfully entangled two atomic quantum memories over a 33-kilometer-long fiber optic connection, setting a new record. The entanglement is mediated via photons emitted by the two quantum memories and has potential applications in large-scale quantum networks and secure communication protocols.

Physicists make leaps in reading out qubits with laser light

Researchers at the University of Colorado Boulder and NIST have successfully demonstrated reading out signals from superconducting qubits using laser light, preserving the qubit's information. This breakthrough could enable the creation of a quantum internet, allowing for secure communication over long distances.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.

Breakthrough paves way for photonic sensing at the ultimate quantum limit

A team of physicists has developed a way to perform high precision measurements without relying on special entangled states of light. The breakthrough uses ring resonators, which can be mass manufactured using standard processes, and enables the creation of chip-scale photonic sensors operating at the quantum limit.

Error-free quantum computing gets real

Researchers at the University of Innsbruck have successfully implemented a universal set of gates on encoded logical quantum bits, enabling fault-tolerant quantum computing. The demonstration showcases two essential gates: CNOT and T-gates, which are crucial for programming all algorithms.

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.

Researchers create flat magic window with liquid crystals

Scientists have developed a transparent device that produces a hidden image when light shines on it, using liquid crystals to recreate an ancient light trick. The technology has the potential to enable reconfigurable displays and stable 3D images.

The quest for an ideal quantum bit

A team of scientists at Argonne National Laboratory has developed a new qubit platform formed by freezing neon gas into a solid and trapping an electron there. The platform shows great promise in achieving ideal building blocks for future quantum computers, with promising coherence times competitive with state-of-the-art qubits.

New approach may help clear hurdle to large-scale quantum computing

A Harvard-led team created a new method for processing quantum information that allows for the dynamic change of atoms' layout during computation, expanding capabilities and enabling self-correction of errors. This approach uses entanglement to connect atoms remotely and can process exponentially large amounts of information.

Apple iPad Pro 11-inch (M4)

Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.

Study points to physical principles that underlie quantum Darwinism

The study investigates the role of physical principles in quantum Darwinism, finding that it relies on non-classical features, specifically entanglement, to emerge via natural selection. The researchers employed generalized probabilistic theories to analyze and compare different physical theories.

New hardware integrates mechanical devices into quantum tech

Researchers have developed a key experimental device for future quantum physics-based technologies by coupling nanomechanical oscillators with qubits. This enables the manipulation of quantum states in mechanical oscillators, generating quantum mechanical effects that could empower advanced computing and precise sensing systems. The de...

In race to build quantum computing hardware, silicon begins to shine

Researchers at Princeton University have achieved an unprecedented level of fidelity in two-qubit silicon devices, paving the way for the use of silicon technology in quantum computing. The study's findings suggest that silicon spin qubits have advantages over other qubit types, including scalability and size limitations.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Henry Yuen wins NSF CAREER Award

Assistant Professor Henry Yuen at Columbia University will receive a $675,000 grant to develop verification protocols for entanglement theory and explore broader mathematical applications. His work aims to solve fundamental problems in computer science, mathematics, and physics using quantum entanglement.

Quantum sensors: Measuring even more precisely

Physicists at the University of Innsbruck have developed a programmable quantum sensor that can measure with even greater precision, using tailored entanglement to optimize performance. The sensor autonomously finds its optimal settings through free parameters, promising a significant advantage over classical computers.

New world record for qubit storage

A UNIGE team has successfully stored a quantum bit for 20 milliseconds in a crystal-based memory. This achievement marks a major step towards the development of long-distance quantum telecommunications networks.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

New technology to make charging electric cars as fast as pumping gas

Quantum charging technology has been developed to charge batteries at a faster rate, cutting the charging time of electric vehicles from ten hours to three minutes. The technology uses quantum resources to charge all cells within the battery simultaneously, leading to a significant speedup in charging speed.

Physicists shed light on the darkness

Researchers at the University of Innsbruck have successfully manipulated dark states in superconducting circuits using microwave radiation. The team's discovery opens up new possibilities for quantum simulations and information processing, which could have significant implications for fields such as chemistry and materials science.

Meta Quest 3 512GB

Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.

Event horizons are tunable factories of quantum entanglement

Researchers have leveraged quantum information theory techniques to amplify entanglement in the Hawking effect, a process previously difficult to test due to the faint nature of Hawking radiation. By illuminating event horizons with appropriately chosen quantum states, they can tunably stimulate entanglement production.

Measuring tiny quantum effects with high precision

A research team at POSTECH has developed a weak-value amplification method to achieve quantum metrology precision without using entangled resources. This breakthrough enables the practical use of quantum metrology by verifying that entanglement is not an absolute requirement for reaching the Heisenberg limit.

Entanglement unlocks scaling for quantum machine learning

A new theorem shows that quantum entanglement eliminates exponential overhead in training quantum neural networks, enabling scalability and reducing data requirements. This breakthrough gives hope for a quantum speedup, where quantum machines outperform classical counterparts.

Nikon Monarch 5 8x42 Binoculars

Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.

New approach transports trapped ions to create entangling gates

Scientists at Georgia Tech Research Institute have demonstrated a new approach for transporting trapped ion pairs through a single laser beam to create entangled qubits. This method reduces the need for multiple optical switches and complex controls, potentially simplifying quantum systems.

Quantum computing in silicon hits 99% accuracy

Researchers have achieved 99% accuracy in quantum computing using silicon-based devices. The breakthrough enables the creation of large arrays of qubits capable of robust computations, overcoming a significant challenge in building reliable quantum computers.

NSF funds Rice effort to measure, preserve quantum entanglement

Physicist Guido Pagano has won a prestigious CAREER award from the National Science Foundation (NSF) to study quantum entanglement and develop new error-correcting tools for quantum computation. He aims to understand how measurement affects entangled systems and create tools to correct errors caused by quantum decoherence.

Sky & Telescope Pocket Sky Atlas, 2nd Edition

Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.

A quantum view of ‘combs’ of light

Researchers at Stanford University have developed a miniaturized frequency comb that can generate non-classical light, enabling the study of quantum entanglement and opening up new pathways for quantum computing. The microcomb's precise spacing allows for detailed measurement of its finer features.

Quantum theory needs complex numbers

Researchers demonstrate that quantum networks' predictions differ when postulates are phrased in real numbers. The study proposes an experimental setup involving two sources and three measurement nodes, where complex quantum theory's predictions cannot be expressed by their real counterparts.

Apple AirPods Pro (2nd Generation, USB-C)

Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.

Optimized method to detect high-dimensional entanglement

Researchers develop novel detection method to identify high-dimensional entanglement states, overcoming challenges faced by traditional methods. The study proposes a protocol to automatically search for optimal certification methods, enabling the creation of high-dimensional quantum information processing systems.

Twisting elusive quantum particles with a quantum computer

Scientists from TUM and Google Quantum AI used a highly controllable quantum processor to simulate exotic particles called anyons, which can emerge as collective excitations in two-dimensional systems. The study reveals the properties of these particles through braiding statistics, a key feature of topologically ordered states.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

A catalytic recipe for transforming quantum states

Researchers have found a complete solution to the problem of whether catalytic transformations are possible, revealing that quantum catalysts can boost quantum processes. This breakthrough has practical applications in quantum cryptography, secure communication, and efficient state merging, making noisy states useful in quantum computing.

A simpler design for quantum computers

Researchers at Stanford University have proposed a new design for photonic quantum computers that can operate at room temperature and require fewer components. The proposed design uses a laser to manipulate an atom, which then modifies the state of photons via quantum teleportation, enabling the creation of complex calculations.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

Researchers disentangle quantum machine learning

A recent study published in PRX Quantum reveals that quantum machine learning algorithms are hindered by excessive entanglement, leading to a phenomenon known as barren plateaus. By limiting depth and connectivity, researchers propose a solution to avoid these regimes and successfully train quantum neural networks.

Fluke 87V Industrial Digital Multimeter

Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.