Researchers have successfully excited a scandium-45 nuclear isomer using X-ray pulses, paving the way for the creation of the world's most precise clock. The breakthrough has significant implications for fields such as nuclear physics, satellite navigation, and telecommunications.
Scientists generate multiple quasiparticles simultaneously in a quantum gas and observe their complex interactions, including attractive and repulsive behavior. Quantum statistics plays a crucial role in these interactions, which are essential for understanding fundamental mechanisms of nature.
Researchers successfully controlled spin waves by using a superconducting electrode, which acts as a mirror to reflect the magnetic field back to the spin wave. This breakthrough offers an energy-efficient alternative to electronics and opens doors for designing new circuits based on spin waves and superconductors.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
Researchers at Google Quantum AI and Stanford University have observed the crossover between two regimes: interactions dominating and measurements dominating. They also demonstrated novel quantum teleportation by measuring all but two distant qubits, generating stronger entanglement between them.
Researchers at OIST have developed a quantum engine that uses the principles of quantum mechanics to create power, replacing traditional fuel-based methods. The engine's efficiency can reach up to 25% and has potential applications in devices such as batteries and sensors.
The University of Science and Technology of China has made a significant breakthrough in exploring exotic spin interactions using solid-state spin quantum sensors. Their research findings provide valuable insights into these interactions, allowing for precise measurements of various spin phenomena.
Nikon Monarch 5 8x42 Binoculars
Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.
Researchers at MIT have developed a novel superconducting qubit architecture that can perform operations between qubits with high accuracy, exceeding 99.9% for two-qubit gates and 99.99% for single-qubit gates. The new design utilizes fluxonium qubits, which have longer lifespans than traditional transmon qubits.
Researchers have demonstrated a way to perform Bell-state measurements with an efficiency exceeding the commonly assumed upper theoretical limit. This breakthrough opens up new perspectives for photonic quantum technologies and could lead to more efficient quantum computing, communication, and sensor devices.
Researchers at Duke University used a quantum computer to measure the geometric phase in light-absorbing molecules, which puts limitations on molecular transformations. This breakthrough allows for direct measurement of a long-standing fundamental question in chemistry, critical to processes like photosynthesis and vision.
Researchers from Hiroshima University found that measurements shape observable reality, suggesting a context-dependent understanding of quantum superpositions. This approach resolves the paradox of conflicting results in quantum experiments and provides evidence against reducing reality to material building blocks.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
Quantum ghost imaging allows 3D imaging on a single photon level, enabling the lowest photon dose possible. The technique can be applied to image materials and tissues sensitive to light or drugs without risk of damage.
Researchers have discovered Rydberg moiré excitons in WSe2 monolayer semiconductor adjacent to graphene, exhibiting multiple energy splittings and a pronounced red shift. The discovery holds promise for applications in sensing and quantum optics due to the strong interactions with the surroundings.
A team at the University of Washington has made a breakthrough in quantum computing by detecting signatures of 'fractional quantum anomalous Hall' (FQAH) states in semiconductor materials. This discovery marks a significant step towards building stable qubits and potentially developing fault-tolerant quantum computers.
Researchers have developed an innovative approach to efficiently manipulate topological edge states for optical channel switching. By exploiting the finite-size effect in a two-unit-cell optical lattice, they achieved dynamic control over topological modes and demonstrated robust device performance.
Aranet4 Home CO2 Monitor
Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.
Researchers at Aalto University create a new bolometer that can accurately measure microwave power down to the femtowatt level at ultra-low temperatures. This breakthrough device has the potential to significantly advance quantum computing and technology, enabling more precise control over qubits and improving overall performance.
Researchers have made a quantum matter breakthrough by tuning density waves in a unitary Fermi gas, creating a new type of matter with extreme interactions. This discovery could lead to a better understanding of complex materials and potentially improve the development of quantum-based technologies.
A new laser-based breathalyzer using artificial intelligence can detect COVID-19 in real-time with excellent accuracy. The technology, powered by frequency comb spectroscopy and machine learning, analyzes the unique chemical fingerprint of each breath sample to identify specific health conditions.
An international research team has confirmed for the first time that mutual information in a many-body quantum system scales with surface area rather than volume. The experiment used ultracold atoms and a special tomography technique to measure the shared information.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
A team of researchers has achieved unparalleled precision in measuring the time delay between two photons using frequency-resolving sampling measurements. This breakthrough enables faster and more efficient characterisation of nanostructures, including biological samples and nanomaterial surfaces.
Researchers at Argonne National Laboratory and University of Chicago developed a hybrid simulation process using IBM quantum computers to solve electronic structure problems. The new method uses classical processing to mitigate noise generated by the quantum computer, paving the way for future improvements.
Researchers from ETH Zurich have achieved groundbreaking cooling of a glass nanoparticle along two directions of motion, overcoming the 'Dark Mode Effect'. This breakthrough enables the creation of fragile quantum states and paves the way for ultrasensitive gyroscopes and sensors.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
Researchers used a self-developed quantum spin amplifier to detect exotic parity-violation interactions beyond the standard model, improving previous limits by at least five orders of magnitude. The experiment has provided new constraints on dark matter and complemented existing models.
Scientists at Ohio State University have made a groundbreaking discovery, allowing them to view inside the deepest recesses of atomic nuclei. By studying how different types of particles interact with each other, they were able to map the arrangement of gluons within atomic nuclei with unprecedented precision.
Researchers at MIT have proposed a new approach to making qubits and controlling them using beams of light from two lasers of slightly different colors. This method enables the direct manipulation of nuclear spin, allowing for precise identification and mapping of isotopes, as well as improved coherence times for quantum memory.
Apple iPad Pro 11-inch (M4)
Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.
Researchers from Nanjing University have proposed the first scheme to practically generate N-photon states deterministically using a lithium-niobate-on-insulator platform. The scheme involves deterministic parametric down-conversion and demonstrates feasibility for generating multiphoton qubit states.
A team of researchers developed a model-free approach using deep reinforcement learning to optimize estimation of multiple parameters in quantum sensors. The protocol achieved significantly better estimations compared to nonadaptive strategies, demonstrating enhanced performance in resource-limited regimes.
Scientists at Stanford University and SLAC National Accelerator Laboratory have made progress toward building a novel quantum simulator. The device can simulate interactions between two quantum objects, paving the way to study complex systems and answer fundamental questions in physics.
Fluke 87V Industrial Digital Multimeter
Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.
Researchers at University of Copenhagen and Ruhr University Bochum have made a groundbreaking discovery, solving a long-standing problem in quantum physics. They can now control two quantum light sources, enabling the creation of quantum mechanical entanglement, a phenomenon with sci-fi-like properties.
Researchers at IBS CSLM discovered pair quasiparticles in a classical system of microparticles driven by viscous flow. These long-lived excitations exhibit anti-Newtonian forces that stabilize pairs, similar to the behavior of Dirac quasiparticles in graphene.
Researchers have developed a novel way to measure a quantum device's accuracy by analyzing universal statistical patterns in the noise. This approach takes advantage of the way information is scrambled in quantum systems, allowing for more efficient error detection and verification.
Kestrel 3000 Pocket Weather Meter
Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.
Researchers report the discovery of photonic hopfions, a new family of 3D topological solitons with freely tunable textures and numbers. These structures exhibit robust topological protection, making them suitable for applications in optical communications, quantum technologies, and metrology.
Physicists at the University of Innsbruck have demonstrated a new nonlinear cooling method, allowing massive objects to be cooled to nearly absolute zero. This breakthrough enables the observation of quantum effects on macroscopic objects, paving the way for highly sensitive quantum sensors.
A new method bridges the quantum and classical worlds, enabling interaction-free detection of microwave pulses with a superconducting circuit. This breakthrough demonstrates genuine quantum advantage using a simpler setup, with potential applications in quantum computing, optical imaging, and cryptographic key distribution.
Computer simulations demonstrate that chaos plays a crucial role in the emergence of thermodynamic behavior from quantum theory. A quantum system with indistinguishable particles and a thermometer-like particle shows a temperature distribution consistent with Boltzmann's rules only when the system exhibits chaos.
Genuine multipartite entanglement, a potent form of entanglement for quantum info processing, has been certified in arbitrary sizes and forms using a new method. The new method, which decomposes the internal structure of the system, proves the existence of genuine multipartite entanglement in weakly entangled states.
Sky & Telescope Pocket Sky Atlas, 2nd Edition
Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.
Scientists at Tel Aviv University have developed a method to create the thinnest possible ladder steps made of distinct electric potentials, which can be used as independent information units. The discovery enables the creation of novel devices with potential applications in electronics and optomechanics.
A team of researchers has developed a prototype of a quantum microscope that can see electric currents, detect fluctuating magnetic fields, and even see single molecules on a surface. The microscope uses atomic impurities and van der Waals materials to achieve high resolution sensitivity and simultaneous imaging of magnetic fields and ...
Physicists have observed novel quantum effects in a topological insulator at room temperature, opening up new possibilities for efficient quantum technologies. This breakthrough uses bismuth-based topological materials to bypass the need for ultra-low temperatures.
GQ GMC-500Plus Geiger Counter
GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.
Scientists at Swinburne University of Technology and FLEET collaborators observe and explain signatures of Fermi polaron interactions in atomically-thin WS2 using ultrafast spectroscopy. Repulsive forces arise from phase-space filling, while attractive forces lead to cooperatively bound exciton-exciton-electron states.
Researchers from HKU and Harvard University have developed a new triangular lattice model and sweeping cluster algorithm to simulate Rydberg arrays. Their simulations reveal highly entangled Z2 quantum spin liquids with large parameter regimes, providing valuable insights for future experiments.
A team led by Prof. Alan Tennant and Dr Allen Scheie gain deeper insights into the interactions between spins in KCuF3, a simple model material for Heisenberg quantum spin chain. They use neutron scattering to study spatial and temporal evolution of spins.
Researchers at Tokyo Institute of Technology developed diamond quantum sensors to accurately measure EV battery charge. The sensors can detect small changes in current with 1% accuracy, extending driving range by up to 10%. This breakthrough reduces CO2 emissions and supports carbon neutrality.
Researchers at the Max Planck Institute have successfully generated up to 14 entangled photons using a single atom, enabling efficient creation of quantum computer building blocks. This breakthrough could facilitate scalable measurement-based quantum computing and enable secure data transmission over greater distances.
Apple AirPods Pro (2nd Generation, USB-C)
Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.
Researchers have developed new stable quantum batteries that can reliably store energy into electromagnetic fields. The micromaser system allows for efficient charging with protection against overcharging and preserves the stored energy's purity.
Scientists from Göttingen and Lausanne successfully created electron-photon pairs in an electron microscope for the first time. This breakthrough enables researchers to harness free electrons and photons in a controlled manner.
Scientists used a nanodiamond-based quantum sensor to measure temperature changes in neurons. The study, published in Advanced Science Journal, found that the sensor's readings correlated with increased neuron firing activity.
Researchers at OU's CQRT are developing quantum synchronization and organization using multiple experimental approaches. They aim to create a quantum network and better understand collective interactions, with potential implications for network synchronization and electrical power systems.
Apple Watch Series 11 (GPS, 46mm)
Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.
A team of scientists has successfully built a neutron interferometer using two separate crystals, a major breakthrough in quantum physics. This achievement opens up new possibilities for quantum measurements and research on quantum effects in a gravitational field.
The research team developed a Floquet spin system that amplifies multiple weak electromagnetic waves simultaneously, increasing the operation bandwidth and enabling the amplification of more than one signal at different frequencies.
Researchers successfully created a two-body time-crystal system in an experiment that challenges our understanding of physics. They also found that time crystals can be used to build useful devices at room temperature, opening up new possibilities for quantum computing.
Researchers at Lancaster University have created a camera-like device that captures images of mini whirlpools in quantum liquids for the first time. The camera uses particle-like disturbances to take pictures of collections of vortices, which are unpredictable and form in specific patterns above a vibrating wire.
Researchers at TU Wien and Hiroshima University have corrected a long-standing flaw in the double-slit experiment, proving that individual particles can move along multiple paths at once. By detecting a single neutron, they were able to determine its presence on each path with high accuracy.
Sony Alpha a7 IV (Body Only)
Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.
Researchers found that quantum error correction can distort the output of quantum sensors and lead to unphysical results due to non-commuting actions. However, they provide procedures for restoring correct results through post-processing and devising ideal sensing protocols.
Researchers from the University of Seville have conducted a groundbreaking experiment demonstrating quantum contextuality without loopholes. The study uses atomic ions to show that certain probabilities have a limit, contradicting previous findings.
Researchers at Tel Aviv University have developed a unique detector using compressed xenon gas to detect axion-like particles, promising a breakthrough in finding dark matter. The new technology enables the exploration of previously inaccessible masses, constraining the properties of axion-like particles.
Researchers from the University of Birmingham have successfully used a quantum gravity gradiometer to detect an object hidden below ground, marking a significant milestone in the development of this technology. The breakthrough could lead to faster, cheaper, and more comprehensive underground mapping, with potential applications in ind...
Physicists have measured Albert Einstein's theory of general relativity at the smallest scale ever, demonstrating time dilation effects between two tiny atomic clocks separated by just a millimeter. The experiments suggest a way to make atomic clocks 50 times more precise than today's best designs.
Davis Instruments Vantage Pro2 Weather Station
Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.
Researchers at the ARC Centre of Excellence in Exciton Science created the first-ever 2D map of the Overhauser field in organic LEDs, revealing local spin variations that can impact device performance. The study highlights challenges in miniaturizing organic-based sensing technologies for practical applications.
Researchers used a COLTRIMS reaction microscope to determine the duration of an electron's release after photon absorption. The study found that the emission time depends on the direction and velocity of the electron, revealing a complex interplay between quantum physics and molecular dynamics.
Researchers at ETH Zurich have successfully implemented a novel measurement scheme for finite-energy states, extending the coherence time of a trapped ion quantum oscillator by a factor of three. This breakthrough addresses a major challenge in quantum computing and brings us closer to enabling fault-tolerant quantum computers.
Rigol DP832 Triple-Output Bench Power Supply
Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.