Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Shining a light on dark valleytronics

Scientists at OIST use advanced spectroscopy to track the evolution of dark excitons, overcoming the fundamental challenge of accessing these elusive particles. The findings lay the foundation for dark valleytronics as a field, with potential applications in quantum information technologies.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Wrinkles in atomically thin materials unlock ultraefficient electronics

Researchers at Rice University have found that bending atomically thin layers of materials like molybdenum ditelluride creates a unique spin texture called persistent spin helix, which preserves spin state even in scattering collisions. This discovery could lead to the development of ultracompact, energy-efficient electronic devices.

Physicists confirm elusive quantum spin liquid in new study

Researchers have identified cerium zirconium oxide as a clear, 3D realization of a rare quantum spin liquid, featuring emergent photons and fractionalized spin excitations. This discovery validates decades of theoretical predictions and has significant implications for next-generation technologies.

Neutrons bridge predictions and reality of quantum spin ice

The study found clear evidence for a quantum spin ice state in the material Ce2Sn2O7, with the experimental data well described by recent theoretical models. The findings may inspire technology for quantum computers and pave the way towards future unifications of theory and experiments.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

A spintronic view of the effect of chiral molecules

Researchers at Mainz University confirmed the chiral-induced spin selectivity (CISS) effect using spintronic methods. The study shows that chiral molecules can convert spin currents to charge with varying efficiency, depending on their chirality and orientation.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

“Fussy” molecules prefer one direction over the other

Scientists from Osaka University have created a new class of materials, called chiral bifacial indacenodithiophene-based π-conjugated polymers, that can selectively interact with electrical currents in different polarities. These films exhibit strong spin polarization, making them promising for applications in spintronics and clean ene...

Unconventional interface superconductor could benefit quantum computing

Researchers developed a new superconductor material that uses a delocalized state of an electron to carry quantum information. The material could be used to create low-loss microwave resonators for quantum computing, which is critical for reducing decoherence and increasing the stability of qubits.

‘Miracle’ filter turns store-bought LEDs into spintronic devices

Researchers have successfully transformed existing optoelectronic devices, including LEDs, into spintronics devices by injecting spin-aligned electrons without ferromagnets or magnetic fields. The breakthrough uses a chiral spin filter made from hybrid organic-inorganic halide perovskite material, overcoming a major barrier to commerci...

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

An alternative way to manipulate quantum states

Researchers at ETH Zurich have successfully manipulated quantum states of single electron spins using spin-polarized currents. This method, which bypasses traditional electromagnetic fields, has the potential to control quantum states with unprecedented precision and localizability.

New approach to identifying altermagnetic materials

Researchers developed a new method to identify altermagnets using X-ray magnetic circular dichroism (XMCD) and theoretically predicted its fingerprint. The approach was successfully applied to manganese telluride (α-MnTe), revealing the material's hidden fingerprint of altermagnetism, which could accelerate spintronics applications.

Good prospects for altermagnets in spin-based electronics

Researchers at Johannes Gutenberg Universitaet Mainz have demonstrated altermagnetic electronic band splitting associated with spin polarization in CrSb, a good conductor at room temperature. The magnitude of this splitting is extraordinary and promises electronic applications for altemagnets.

Davis Instruments Vantage Pro2 Weather Station

Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.

Dortmund physicists develop highly robust time crystal

Researchers at TU Dortmund University have developed a highly durable time crystal that outlasts previous experiments by tens of thousands of times. The team discovered a way to stabilize the crystal using nuclear spins, enabling it to maintain its periodic behavior for up to 40 minutes.

Magnetic graphene for low-power electronics

Magnetic graphene has been developed to induce and directly quantify spin splitting in two-dimensional materials. The technology offers a promising avenue for advancing the field of two-dimensional spintronics with applications for low-power electronics.

Atomic dance gives rise to a magnet

Researchers at Rice University have discovered a way to transform a rare-earth crystal into a magnet by using chirality in phonons. Chirality, or the twisting of atoms' motion, breaks time-reversal symmetry and aligns electron spins, creating a magnetic effect.

Apple AirPods Pro (2nd Generation, USB-C)

Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.

Physicists demonstrate powerful physics phenomenon

Researchers at Ohio State University have detected a previously unknown physics phenomenon, the orbital Hall effect, which could revolutionize data storage in future computer devices. The study's findings suggest that utilizing orbital currents instead of spin currents could lead to lower energy consumption and higher speeds.

Copper could help create clearer MRI images and improved diagnosis - study

Researchers have discovered a novel copper protein binding site that shows promise for use in magnetic resonance imaging (MRI) contrast agents, potentially leading to clearer images and improved diagnoses. The new structure displayed highly effective levels of relaxivity, equal and superior to existing Gd(III) agents used in clinical MRI.

Quantum materials: Electron spin measured for the first time

An international team of scientists has successfully measured the electron spin in matter for the first time using kagome materials. The results could revolutionize the study of quantum materials, with potential applications in renewable energy, biomedicine, electronics, and quantum computing.

Aranet4 Home CO2 Monitor

Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.

New road towards spin-polarised currents

Researchers have found a way to control spin in Hafnium diselenide, a material that could lead to more efficient spintronics. This discovery provides an entirely new route towards generating spin-polarised currents from transition metal dichalcogenides.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.

Researchers devise tunable conducting edge

Scientists have developed a magnetized state in monolayer tungsten ditelluride, allowing for controlled electron flow and potential applications in non-volatile memory chips. The discovery enables the creation of smaller, more energy-efficient devices that consume less power and dissipate less energy.

Apple iPad Pro 11-inch (M4)

Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.

Green information technologies: Superconductivity meets spintronics

Researchers have created a material system exhibiting unusually long-range Josephson effect, enabling macroscopic quantum coherence and potential for spintronic applications. The discovery of 'triplet' superconductivity, where electrons with the same spin circulate, expands possibilities for low-power consumption devices.

Direct photons offer glimpse of gluons' dynamic motion

Researchers at RHIC's PHENIX Collaboration report new data on direct photons, revealing the potential to study gluons' transverse motion within protons. The measurements are 50 times more precise than previous data and validate the approach for future studies of proton spin and structure.

Scientists discover spin polarization induced by shear flow

Researchers at Chinese Academy of Sciences discovered spin-polarization in fluid due to shear flow, predicting a new effect called shear-induced polarization (SIP). This discovery resolves the long-standing spin-sign puzzle and demonstrates a pattern similar to measured Lambda polarization in experiments.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

New discovery brings analogue spintronic devices closer

Scientists from the University of Groningen have shown that nonlinear effects can be achieved using 2D boron nitride, enabling spin signals to multiply and be measured without ferromagnets. This technology has potential applications in neuromorphic computing and spin-based electronics.

Sky & Telescope Pocket Sky Atlas, 2nd Edition

Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.

CCNY physicists shed light on the nanoscale dynamics of spin thermalization

Researchers at CCNY provide new insights on nanoscale spin thermalization dynamics, discovering that groups of electron spins can facilitate communication between isolated nuclear spins. This breakthrough could enable devices using electron and nuclear spins for quantum information processing or sensing at the nanoscale.

Controlling superconductivity using spin currents

A KAIST research team used electron microscopy and scanning tunneling microscope to study the connection between magnetism and superconductivity. They found that low-energy spin fluctuations cannot mediate pairing between electrons, a critical step for superconductivity. This breakthrough enables the development of novel antiferromagne...

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

Researchers steer the flow of electrical current with spinning light

Scientists at the University of Minnesota demonstrated a way to control the direction of photocurrent without an electric voltage. By using circularly polarized light and topological insulators, they created a device that generates a spin-polarized current flowing in one direction.

Atomically thin layers bring spintronics closer to applications

University of Groningen scientists have developed a graphene-based device that can inject and detect electron spins with unprecedented efficiency, increasing the spin signal by a hundredfold. The discovery has significant implications for the development of spin transistors and spin-based logic.

Measuring time without a clock

Researchers at EPFL have determined a delay of one billionth of one billionth of a second in photoemission by measuring the spin of photoemitted electrons. This discovery has significant implications for understanding the properties of electrons in solids and advancing spectroscopy techniques.

Long-distance transport of electron spins for spin-based logic devices

A groundbreaking concept proposes using electron spins in semiconductors for information processing, enabling quantum computing and reducing energy consumption. The research team achieved long-distance spin transport in a semiconductor quantum well, controlling spin precession speed with an external gate voltage.

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

'Goldilocks material' could change spintronics

A team at Trinity College in Dublin has discovered a new class of magnetic materials based on Mn-Ga alloys, which could revolutionize data storage and increase wireless data transmission speeds. The material has unique properties that make it immune to external magnetic fields and free from demagnetizing forces.

Breakthrough for information technology using Heusler materials

Researchers at Johannes Gutenberg University Mainz have directly observed 100 percent spin polarization of a Heusler compound, paving the way for future development of high-performance spintronic devices. The study's findings provide a cornerstone for innovative applications in hard disk reader heads and non-volatile storage elements.

Magnetic switching simplified

Researchers have discovered a new effect that enables easier production of spin-polarized currents necessary for magnetic chip switching. This breakthrough could lead to more efficient and robust magnetic Random Access Memories (MRAMs) for information processing.

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.

NRL scientists demonstrate efficient electrical spin injection into silicon

Researchers at the Naval Research Laboratory (NRL) have successfully injected spin-polarized electrons from a ferromagnetic metal contact into silicon, producing a large electron spin polarization. This achievement is crucial for developing devices that rely on electron spin rather than electron charge, known as semiconductor spintronics.

33-year hunt for proof of spin current now over, announced in Science

Researchers have observed signatures of the spin Hall effect in semiconductor chips, a phenomenon predicted decades ago that could enable spin-based information transfer. The discovery has potential applications in quantum computing, quantum communication, and advanced sensing technologies.