Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

A slight twist, a big change: atomic registry reshapes electrons

Researchers have discovered that twisting and stacking oxide crystals can create specific atomic configurations that act as an 'invisible fence' to trap or repel electrons. The study reveals charge disproportionation due to subtle distortions in oxygen octahedra, leading to altered electron accumulation patterns.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.

Atomistic model explains how memory metals can change their shape

Researchers at the University of Groningen developed an atomistic model that predicts the driving force for microstructural twinning in shape memory alloys. This discovery can lead to the creation of new crystalline materials with improved reversible deformations, vibration damping, and impact absorption.

The mathematical foundation of post-quantum cryptography

This article introduces post-quantum cryptography, emphasizing its mathematical foundation in lattice theory and positive definite quadratic forms. The study explores the shortest vector problem (SVP) and closest vector problem (CVP), crucial problems for further development of lattice-based cryptography.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Strain “trick” improves perovskite solar cells’ efficiency

Researchers at EPFL have developed a method to stabilize wide-bandgap perovskites using lattice strain, reducing energy losses and improving stability. This approach enables the incorporation of rubidium ions into the structure, resulting in increased efficiency and reduced photovoltage loss.

Aranet4 Home CO2 Monitor

Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.

Physics with a twist: FSU researchers publish new findings on graphene

Researchers from FSU and National High Magnetic Field Laboratory found that twisted bilayer graphene's conductivity depends on minute geometry structure changes upon interlayer twisting. The study reveals the potential of multilayer moiré systems in constructing materials with on-demand optical properties.

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.

AI model can reveal the structures of crystalline materials

A new AI model called Crystalyze can analyze X-ray crystallography data to determine the structure of powdered crystals. The model was trained on a database of over 150,000 materials and successfully predicted structures for over 100 previously unsolved patterns.

Mathematicians model a puzzling breakdown in cooperative behaviour

A new model reveals that cooperative behaviour between species may break down when conditions are ripe for mutual benefit. Researchers found that as cooperation becomes easier, it can unexpectedly disappear, with asymmetric clusters forming and interacting across lattices.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Rice, DOE labs tackle knowledge gap in materials science research

Researchers have discovered a new connection between the nanoscale features of a piezoelectric material and its macroscopic properties, providing a new approach to designing smaller electromechanical devices. The mesoscale structures reveal a complex tile-like pattern that aligns dipoles in a specific way under an electric field.

Uncovering the nature of emergent magnetic monopoles

Scientists have discovered unique periodic structures in manganese germanide that behave like magnetic monopoles and antimonopoles. The researchers studied the collective excitation modes of these structures, revealing a way to experimentally determine their spatial configuration.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.

Clemson researchers tackle challenge in new quantum materials design

Researchers at Clemson University have developed a new noncentrosymmetric triangular-lattice magnet, CaMnTeO6, which displays strong quantum fluctuations and nonlinear optical responses. This breakthrough material has the potential to lead to advancements in solid-state quantum computing, spin-based electronics, resilient climate chang...

Diamond heat

Researchers used supercomputer simulations and machine learning to map diamond's phonon stability boundary in six dimensional strain space. This framework guides the engineering of materials through elastic strain engineering, enabling the development of new devices such as computer chips and quantum sensors.

Solving physics puzzles with colored dots

Researchers at ETH Zurich and Harvard/Princeton used quantum pointillism to study complex quantum systems made of interacting particles. They observed the formation of spin polarons, which are crucial for understanding magnetic behavior in materials.

New method to measure entropy production on the nanoscale

Researchers at Chalmers University of Technology developed a computational model to measure entropy production on the nanoscale in laser-excited crystalline materials. The model reveals that phonons, lattice vibrations, can produce entropy similar to bacteria in water.

Sky & Telescope Pocket Sky Atlas, 2nd Edition

Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.

Study clarifies a key question in particle physics

Researchers identified the origin of a discrepancy between experimental and theoretical values of the muon's magnetic moment. The study found that lattice QCD and electron-positron collision data disagree, highlighting the need to resolve this puzzle.

Ice-ray patterns: A rediscovery of past design for the future

A study discovers that traditional Chinese ice-ray lattice designs can provide unique stiffness and strength under asymmetric loads, offering an alternative to conventional gridshells. The research also explores the potential of integrating complex geometry into facade design and micro-scale material design.

Simulations show how HIV sneaks into the nucleus of the cell

Researchers used simulations to model HIV's journey into the nucleus, finding it uses an electrostatic ratchet to squeeze through. The study provides insights into the complex interactions between the virus and cell, suggesting new targets for therapeutic drugs.

Fluke 87V Industrial Digital Multimeter

Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.

Artificial intelligence unravels mysteries of polycrystalline materials

Researchers at Nagoya University used AI to analyze image data of polycrystalline silicon and discovered staircase-like structures that cause dislocations during crystal growth. The study sheds light on the formation of dislocations in polycrystalline materials, which can affect electrical conduction and overall performance.

New research finds stress and strain changes metal electronic structure

The study demonstrates experimentally that the electronic and mechanical properties of a metal are connected. Researchers measured lattice distortion as a function of applied stress in the superconducting metal strontium ruthenate, finding changes in mechanical stiffness corresponding to new electronic states becoming occupied.

Apple iPad Pro 11-inch (M4)

Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.

Conduction electrons drive giant, nonlinear elastic response in Sr2RuO4

Conduction electrons play a crucial role in the elastic response of Sr2RuO4. Research reveals that a tiny fraction of current-carrying electrons can dominate the others, making the lattice softer. This finding provides new insights into decades-old problems and has implications for future research.

Navigating moiré physics and photonics with band offset tuning

Researchers propose a new way to control moiré flatbands by adjusting the band offset of two photonic lattices, enabling the creation of novel multiresonant moiré devices. This breakthrough opens new opportunities in moiré photonics and promises to inspire future explorations into innovative moiré devices.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

Human disease simulator lets scientists choose their own adventure

Researchers at Northwestern University developed Lattice, a device that simulates human disease in multiple organs to analyze interactions and test new drugs. The technology can replicate complex disease processes, allowing scientists to study the effects of obesity on endometrial cancer, for example.

Graphene: Perfection is futile

Researchers at TU Wien developed a comprehensive computer model of realistic graphene structures, showing that the material's desired effects are stable even with defects. This means graphene can be used in quantum information technology and sensing without needing to be perfect.

Calculations reveal high-resolution view of quarks inside protons

Researchers used supercomputers to predict the spatial distributions of charges, momentum, and other properties of 'up' and 'down' quarks within protons. The results revealed key differences in the characteristics of the up and down quarks, implying different contributions to the proton's fundamental properties.

Meta Quest 3 512GB

Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.

When D turns to F, quantum matter is A-plus

Researchers have found that certain materials can exhibit D-wave effects, entangled with other quantum states, allowing for efficient coupling at higher temperatures. This breakthrough bridges condensed matter physics subfields and could enable practical applications of quantum computing.

Puzzling glass vibrations

Physicists at the University of Konstanz solve a physics mystery by reworking a discarded model, which explains glass's unique sound wave behavior and its implications for thermal properties.

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.

Shining potential of missing atoms

A team at the University of Vienna has developed a method to controllably create single atomic vacancies in hexagonal boron nitride (hBN) using ultra-high vacuum and aberration-corrected scanning transmission electron microscopy. This breakthrough enables the creation of defects that can emit single photons, opening up new opportunitie...

Revolutionizing optical control with topological edge states

Researchers have developed an innovative approach to efficiently manipulate topological edge states for optical channel switching. By exploiting the finite-size effect in a two-unit-cell optical lattice, they achieved dynamic control over topological modes and demonstrated robust device performance.

Physicists discover ‘stacked pancakes of liquid magnetism’

Researchers have discovered a new phase of liquid magnetism in layered helical magnets, where magnetic dipoles behave like 'flattened puddles' with varying alignment between layers. This phenomenon, predicted by a computational model, may explain the unusual electronic behavior observed in these materials.

Graphene grows – and we can see it

Researchers have created a micrometre-size model of atomic graphene to study defects, which are crucial for the material's properties. The model reveals that common defects form in early stages of growth and lead to stable defect configurations.

Semiconductor lattice marries electrons and magnetic moments

Researchers stack ultrathin monolayers of semiconductors to create a moiré lattice that traps individual electrons in tiny slots. This configuration allows for continuous tuning of electron mass and density, leading to the observation of heavy electrons and potential emergence of a 'strange' metal phase.

GoPro HERO13 Black

GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.

Optomechanics simulates graphene lattices

Researchers at EPFL's School of Basic Sciences created a large-scale, configurable superconducting circuit optomechanical lattice to simulate graphene lattices. The device exhibits non-trivial topological edge states and can be used to study many-body physics.

Nikon Monarch 5 8x42 Binoculars

Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.

Study makes spin liquid model more realistic

Researchers improved the Kitaev spin liquid model by freezing electrons in space, allowing only spin contributions at low temperatures. The study successfully explained experimental data and predicted a topological phase in the presence of an external magnetic field.

Interwoven: Charge and magnetism intertwine in kagome material

Researchers at Rice University have discovered a unique arrangement of atoms in iron-germanium crystals that leads to a collective dance of electrons. The phenomenon, known as a charge density wave, occurs when the material is cooled to a critically low temperature and exhibits standing waves of fluid electrons.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

SU(N) matter is about 3 billion times colder than deep space

Researchers use lasers to cool atoms to absolute zero, revealing new phenomena in an unexplored realm of quantum magnetism. The creation of SU(N) matter opens a gateway to understanding the behavior of materials and potentially leading to novel properties.

Bumps could smooth quantum investigations

Rice University engineers have developed a novel approach to manipulating the magnetic and electronic properties of 2D materials by stressing them with contoured substrates. The technique, inspired by recent discoveries in twisted 2D materials, allows for unprecedented control over quantum effects.

Mutating quantum particles set in motion

The study reveals that particles can behave as bosons in one region and fermions in another, leading to striking phenomena like particle trapping or fragmentation. This discovery opens up a window to engineer and control new kinds of collective motion in the quantum world.

Apple AirPods Pro (2nd Generation, USB-C)

Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.