Bluesky Facebook Reddit Email

University of Cincinnati and Air Force use algal enzyme to create new silicon-based materials

09.19.01 | University of Cincinnati

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Their research results will be published in the Sept. 20 issue of the journal Nature.

The research group includes Professor Stephen Clarson and graduate student Patrick Whitlock of the UC department of materials science and engineering and UC alumnus Lawrence Brott, who carried out his Ph.D. with Professor Clarson and is now at Wright-Patt. The other co-authors are David Pikas, Rajesh Naik, Sean Kirkpatrick, David Tomlin and Morley Stone.

Together, they utilized a synthetic form of the active site of a key enzyme from the diatom Cylindrotheca fusiformis and used this fragment to create intricate silica patterns at the nanoscale level.

"Nature makes these complex structures already," said Clarson, noting the increased interest in using biological systems to build new materials.

Diatoms are tiny algae which typically produce silica shells. "They form these fabulous materials under such modest conditions," said Clarson. The enzyme used by the diatom was discovered less than two years ago, but Clarson and his collaborators have already found a way to take advantage of the enzyme to create a new hybrid organic/inorganic nanostructure of silica spheres.

Applications for these novel materials include new sensors and specialized goggles for the military, including improved night vision goggles.

The specific device described in the Nature paper is a photonic system which can produce ultrafast holograms.

Clarson said the research would be impossible without an interdisciplinary team. "We have chemists, engineers and biologists working together. It's a very exciting area of science, but you need team effort to succeed in this type of research."

Long-term applications of materials also include noninvasive cancer therapy, optical data storage and blue light lasers.

Clarson noted that the worldwide market for silicon-based polymers is currently $10 billion a year. "So, there are many applications with potential for major economic impact," he said.

The research was funded by more than $900,000 in grants from the Dayton Area Graduate Studies Institute and the Air Force Office of Scientific Research.

Nature

Keywords

Article Information

Contact Information

Chris Curran
University of Cincinnati
chris.curran@uc.edu

Source

How to Cite This Article

APA:
University of Cincinnati. (2001, September 19). University of Cincinnati and Air Force use algal enzyme to create new silicon-based materials. Brightsurf News. https://www.brightsurf.com/news/8OJQ09N1/university-of-cincinnati-and-air-force-use-algal-enzyme-to-create-new-silicon-based-materials.html
MLA:
"University of Cincinnati and Air Force use algal enzyme to create new silicon-based materials." Brightsurf News, Sep. 19 2001, https://www.brightsurf.com/news/8OJQ09N1/university-of-cincinnati-and-air-force-use-algal-enzyme-to-create-new-silicon-based-materials.html.