Bluesky Facebook Reddit Email

Single-atom catalysis: In search of “holy grails” in catalysis

10.22.23 | Dalian Institute of Chemical Physics, Chinese Academy Sciences

DJI Air 3 (RC-N2)

DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.


In the field of catalysis, the term "holy grail" reactions refer to those reactions that hold significant scientific, economic, and environmental sustainability value for the future of humanity. These reactions harness abundant and readily available resources on Earth, such as methane (CH 4 ), water (H 2 O), carbon dioxide (CO 2 ), nitrogen (N 2 ), to produce various valuable chemical products. Despite their significance, these reactions often suffer from low conversion rates and poor selectivity due to the chemical inertness of reactants and the relatively high reactivity of the products. Developing new catalysts to lower the activation energy barrier remains a grand challenge.

Single-atom catalysts (SACs), which contain partially charged single metal atoms with well-defined and tunable structures, represent a promising class of heterogeneous catalysts. Developing novel SACs can not only improve atomic utilization efficiency in active metals, but also promote a deeper understanding of reaction mechanisms and structure-activity relationships. In recent years, emerging SACs have been adopted in those challenging “holy grail” reactions, aiming to improve conversation and selectivity and/or enable milder reaction conditions.

In this context, Prof. Ning Yan (National University of Singapore), Prof. Tao Zhang (Dalian Institute of Chemical Physics, CAS) and co-workers published a perspective that evaluates the latest applications of SACs in five "holy grail" reactions: partial methane oxidation to methanol, non-oxidative methane coupling, photocatalytic water splitting, photocatalytic CO 2 reduction, and nitrogen reduction. SACs with structurally well-defined single-atom metal sites possess special geometric and electronic structures, which interacts with inert molecules and regulate the conversion process precisely, achieving selective production of the aim product. Some SACs are composed of molecular-level defined support and unified coordination environments, acting as ideal model catalysts for in-depth mechanistic studies when combined with advanced spectroscopic techniques and DFT calculation. Meanwhile, new catalytic materials like multi-site catalysts, containing two single-atom sites with different coordination structures, or one single-atom site and other non-single-atom sites, can facilitate activation of multiple species, inducing synergistic promotional effects to the reaction.

Potential future directions for the field are outlooked. These breathtaking potential topics include further exploring mechanisms and structure-activity relationships, leveraging advanced information technology for efficient catalyst screening, designing novel catalytic sites to broaden the application scope of catalytic materials, and improving the stability of SACs under the working condition. The perspective was published in Chinese Journal of Catalysis (https://doi.org/10.1016/S1872-2067(23)64505-X).

###

About the Journal

Chinese Journal of Catalysis is co-sponsored by Dalian Institute of Chemical Physics, Chinese Academy of Sciences and Chinese Chemical Society, and it is currently published by Elsevier group. This monthly journal publishes in English timely contributions of original and rigorously reviewed manuscripts covering all areas of catalysis. The journal publishes Reviews, Accounts, Communications, Articles, Highlights, Perspectives, and Viewpoints of highly scientific values that help understanding and defining of new concepts in both fundamental issues and practical applications of catalysis. Chinese Journal of Catalysis ranks at the top one journal in Applied Chemistry with a current SCI impact factor of 16.5. The Editors-in-Chief are Profs. Can Li and Tao Zhang.

At Elsevier http://www.journals.elsevier.com/chinese-journal-of-catalysis

Manuscript submission https://mc03.manuscriptcentral.com/cjcatal

Chinese Journal of Catalysis

Keywords

Article Information

Contact Information

Fan He
Dalian Institute of Chemical Physics, Chinese Academy Sciences
hef197@dicp.ac.cn

How to Cite This Article

APA:
Dalian Institute of Chemical Physics, Chinese Academy Sciences. (2023, October 22). Single-atom catalysis: In search of “holy grails” in catalysis. Brightsurf News. https://www.brightsurf.com/news/8OM77JE1/single-atom-catalysis-in-search-of-holy-grails-in-catalysis.html
MLA:
"Single-atom catalysis: In search of “holy grails” in catalysis." Brightsurf News, Oct. 22 2023, https://www.brightsurf.com/news/8OM77JE1/single-atom-catalysis-in-search-of-holy-grails-in-catalysis.html.