Early in the 1969 film “Midnight Cowboy,” Dustin Hoffman, playing the character of Ratso Rizzo, crosses a Manhattan street and angrily bangs on the hood of an encroaching taxi. Hoffman’s line — “I’m walking here!” — has since been repeated by thousands of New Yorkers. Where cars and people mix, tensions rise.
And yet, governments and planners across the U.S. haven’t thoroughly tracked where it is that cars and people mix. Officials have long measured vehicle traffic closely while largely ignoring pedestrian traffic. Now, an MIT research group has assembled a routable dataset of sidewalks, crosswalks, and footpaths for all of New York City — a massive mapping project and the first complete model of pedestrian activity in any U.S. city.
The model could help planners decide where to make pedestrian infrastructure and public space investments, and illuminate how development decisions could affect non-motorized travel in the city. The study also helps pinpoint locations throughout the city where there are both lots of pedestrians and high pedestrian hazards, such as traffic crashes, and where streets or intersections are most in need of upgrades.
“We now have a first view of foot traffic all over New York City and can check planning decisions against it,” says Andres Sevtsuk, an associate professor in MIT’s Department of Urban Studies and Planning (DUSP), who led the study. “New York has very high densities of foot traffic outside of its most well-known areas.”
Indeed, one upshot of the model is that while Manhattan has the most foot traffic per block, the city’s other boroughs contain plenty of pedestrian-heavy stretches of sidewalk and could probably use more investment on behalf of walkers.
“Midtown Manhattan has by far the most foot traffic, but we found there is a probably unintentional Manhattan bias when it comes to policies that support pedestrian infrastructure,” Sevtsuk says. “There are a whole lot of streets in New York with very high pedestrian volumes outside of Manhattan, whether in Queens or the Bronx or Brooklyn, and we’re able to show, based on data, that a lot of these streets have foot-traffic levels similar to many parts of Manhattan.”
And, in an advance that could help cities anywhere, the model was used to quantify vehicle crashes involving pedestrians not only as raw totals, but on a per-pedestrian basis.
“A lot of cities put real investments behind keeping pedestrians safe from vehicles by prioritizing dangerous locations,” Sevtsuk says. “But that’s not only where the most crashes occur. Here we are able to calculate accidents per pedestrian, the risk people face, and that broadens the picture in terms of where the most dangerous intersections for pedestrians really are.”
The paper, “Spatial Distribution of Foot-traffic in New York City and Applications for Urban Planning,” will be published in Nature Cities .
The authors are Sevtsuk, the Charles and Ann Spaulding Associate Professor of Urban Science and Planning in DUSP and head of the City Design and Development Group; Rounaq Basu, an assistant professor at Georgia Tech ; Liu Liu, a PhD student at the City Form Lab in DUSP; Abdulaziz Alhassan, a PhD student at MIT’s Center for Complex Engineering Systems; and Justin Kollar, a PhD student at MIT’s Leventhal Center for Advanced Urbanism in DUSP.
Walking everywhere
The current study continues work Sevtsuk and his colleagues have conducted charting and modeling pedestrian traffic around the world, from Melbourne to MIT’s Kendall Square neighborhood in Cambridge, Massachusetts. Many cities collect some pedestrian count data — but not much. And while officials usually request vehicle traffic impact assessments for new development plans, they rarely study how new developments or infrastructure proposals affect pedestrians.
However, New York City does devote part of its Department of Transportation (DOT) to pedestrian issues, and about 41 percent of trips city-wide are made on foot, compared to just 28 percent by vehicle, likely the highest such ratio in any big U.S. city. To calibrate the model, the MIT team used pedestrian counts that New York City’s DOT recorded in 2018 and 2019, covering up to 1,000 city sidewalk segments on weekdays and up to roughly 450 segments on weekends.
The researchers were able to test the model — which incorporates a wide range of factors — against New York City’s pedestrian-count data. Once calibrated, the model could expand foot-traffic estimates throughout the whole city, not just the points where pedestrian counts were observed.
The results showed that in Midtown Manhattan, there are about 1,697 pedestrians, on average, per sidewalk segment per hour during the evening peak of foot traffic, the highest in the city. The financial district in lower Manhattan comes in second, at 740 pedestrians per hour, with Greenwich Village third at 656.
Other parts of Manhattan register lower levels of foot traffic, however. Morningside Heights and East Harlem register 226 and 227 pedestrians per block per hour. And that’s similar to, or lower than, some parts of other boroughs. Brooklyn Heights has 277 pedestrians per sidewalk segment per hour; University Heights in the Bronx has 263; Borough Park in Brooklyn and the Grand Concourse in the Bronx average 236; and a slice of Queens in the Corona area averages 222. Many other spots are over 200.
The model overlays many different types of pedestrian journeys for each time period and shows that people are generally headed to work and schools in the morning, but conduct more varied types of trips in mid-day and the evening, as they seek out amenities or conduct social or recreational visits.
“Because of jobs, transit stops are the biggest generators of foot traffic in the morning peak,” Liu observes. “In the evening peak, of course people need to get home too, but patterns are much more varied, and people are not just returning from work or school. More social and recreational travel happens after work, whether it’s getting together with friends or running errands for family or family care trips, and that’s what the model detects too.”
On the safety front, pedestrians face danger in many places, not just the intersections with the most total accidents. Many parts of the city are riskier than others on a per-pedestrian basis, compared to the locations with the most pedestrian-related crashes.
“Places like Times Square and Herald Square in Manhattan may have numerous crashes, but they have very high pedestrian volumes, and it’s actually relatively safe to walk there,” Basu says. “There are other parts of the city, around highway off-ramps and heavy car-infrastructure, including the relatively low-density borough of Staten Island, which turn out to have a disproportionate number of crashes per pedestrian.”
Taking the model across the U.S.
The MIT model stands a solid chance of being applied in New York City policy and planning circles, since officials there are aware of the research and have been regularly communicating with the MIT team about it.
For his part, Sevtsuk emphasizes that, as distinct as New York City might be, the MIT model can be applied to cities and town anywhere in the U.S. As it happens, the team is working with municipal officials in two other places at the moment. One is Los Angeles, where city officials are not only trying to upgrade pedestrian and public transit mobility for regular daily trips, but making plans to handle an influx of visitors for the 2028 summer Olympics.
Meanwhile the state of Maine is working with the MIT team to evaluate pedestrian movement in over 140 of its cities and towns, to better understand the kinds of upgrades and safety improvements it could make for pedestrians across the state. Sevtsuk hopes that still other places will take notice of the New York City study and recognize that the tools are in place to analyze foot traffic more broadly in U.S. cities, to address the urgent need to decarbonize cities, and to start balancing what he views as the disproportionate focus on car travel prevalent in 20th century urban planning.
“I hope this can inspire other cities to invest in modeling foot traffic and mapping pedestrian infrastructure as well,” Sevtsuk says. “Very few cities make plans for pedestrian mobility or examine rigorously how future developments will impact foot-traffic. But they can. Our models serve as a test bed for making future changes.”
###
Written by Peter Dizikes, MIT News
Nature Cities
“Spatial distribution of foot traffic in New York City and applications for urban planning”