SAN DIEGO -- Neuroscientists are developing a clearer picture than ever before of how the animal brain processes social information, from status and competitive advantage in a group to the calls and vocalizations of peers. New studies in mice and marmosets help us understand a range of disorders defined by deficits in social function and identify mechanisms that could also operate in the human brain. The research is presented today at Neuroscience 2018, the annual meeting of the Society for Neuroscience and the world's largest source of emerging news about brain science and health.
Using imaging to record activity from brain cells, neuronal viral tracing, and positron emission tomography (PET), it is possible to observe and track activity in the brain during experimental social interactions. Since many regions of the brain are common across mammals, being able to visualize a mouse brain reacting to a social interaction, or view the processing of vocalizations at a neurological level, could be relevant in understanding the human brain. These findings are of particular interest to researchers studying disorders of social learning, such as autism spectrum disorder.
Today's new research shows that:
"The ability to zoom into areas of the brain and watch communication or interaction being processed in such detail provides fascinating information," said press conference moderator Kay Tye, PhD, of the Massachusetts Institute of Technology. "Whether for perception of vocalization and communication or a social rank in a competitive situation, we are beginning to build up a picture of normal brain processing of social interaction that opens opportunities for strategies to treat dysfunction and disorders that affect social function."
###
This research was supported by national funding agencies including the National Institutes of Health, as well as other public, private, and philanthropic organizations worldwide. Find out more about how the brain processes social information on BrainFacts.org .
Related Neuroscience 2018 Presentation Presidential Lecture: Neurobiology of Social Behavior Circuits Sunday, Nov. 4, 5:15-6:30 p.m., SDCC Ballroom 20