Researchers at RIKEN have achieved error correction in a three-qubit silicon-based system, a major step toward large-scale quantum computing. This accomplishment demonstrates control of one of the largest qubit systems in silicon, providing a prototype for quantum error correction.
An international research team led by the University of Göttingen has discovered unexpected quantum effects in naturally occurring double-layer graphene. The study reveals a variety of complex quantum phases emerging at temperatures near absolute zero, including magnetic behavior without external influence.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
Researchers at ICFO successfully simulated a topological gauge theory using ultracold potassium atoms dressed with laser light, moving beyond previous electromagnetism simulations. This breakthrough allows for better understanding of exotic quantum behavior in materials and error correction codes for future quantum computers.
Scientists have successfully implemented the world's fastest two-qubit gate in a quantum computer, achieving an impressive speed of 6.5 nanoseconds using cold atoms cooled to near absolute zero and optical tweezers. This breakthrough has significant implications for the development of ultrafast quantum computing hardware.
A research group from Osaka Metropolitan University investigates Adiabatic State Preparation (ASP) for efficient electron correlation effects in molecules. They find four key points relevant to ASP's computational conditions, making the method more practical.
Creality K1 Max 3D Printer
Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.
Researchers optimized the ZZ SWAP network protocol, introducing a new technique to improve quantum error mitigation. This enables more efficient execution of quantum algorithms like QAOA, which can solve combinatorial optimization problems.
A new review paper assesses recent progress in controlling quantum systems and applies it to emerging technologies, highlighting the need for a unified theoretical framework. The authors identify roadblocks that must be overcome to manifest a future quantum technological landscape.
A team led by Dr SeyedAbdolreza Sadjadi and Professor Quentin Parker from HKU's Laboratory for Space Research identified highly ionised species of C60 fullerene as plausible carriers of some prominent UIE bands. Theoretical mid-infrared signatures of these ionised forms match well with astronomical UIE features, providing a promising d...
Researchers have found a way to precisely control qubits without previous limitations, enabling large-scale quantum processors and quantum memories. The new method combines optical methods with microwaves to overcome wiring issues, paving the way for quantum computing advancement.
Meta Quest 3 512GB
Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.
Researchers from NUS and LMU Munich successfully demonstrated device-independent QKD, a new form of quantum key distribution that is secure even if users are not privy to the underlying hardware. The experiment used a new protocol with an extra set of key-generating measurements to make it more tolerant to noise and loss.
Researchers at the University of Innsbruck developed a quantum computer that can perform arbitrary calculations using quantum digits (qudits), exceeding classical computers' efficiency. This innovation unlocks more computational power with fewer quantum particles.
Scientists at Simon Fraser University have made a breakthrough in developing quantum technology by observing over 150,000 silicon 'T centre' photon-spin qubits. This discovery enables the creation of massively scalable quantum computers and quantum internet that can connect them.
Researchers developed topological membrane metadevices for on-chip terahertz wave manipulations, showcasing robust single-mode manipulation and valley-locked edge states. This breakthrough enables the development of a robust platform for terahertz on-chip communication, sensing, and multiplexing systems.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
Researchers at Indiana University and the University of Tennessee have developed a one-dimensional helium model system, which enables the creation of smaller and faster microchips. The new system is designed to explore the behavior of particles in a confined space, allowing for the study of previously unexplored physics.
Physicists at HZDR and CASUS improved the density functional theory method to accurately describe quantum many-body systems, breaking a significant simplification. This enables studies of non-linear phenomena in complex materials with unprecedented temporal and spatial resolution.
Scientists have created a new technology that can manipulate light in non-reciprocal ways, allowing for more advanced applications in quantum computing. The innovation uses nanostructured surfaces to convert infrared light into visible light, enabling the creation of specific photon conditions.
Researchers investigate the search for Majorana fermions in iron-based superconductors, which could enable topological quantum computing and ultra-low energy electronics. The existence of Majorana zero-energy modes in topological superconductors makes them a promising candidate material for realizing these technologies.
Researchers at MIT have developed a method to enable quantum sensors to detect any arbitrary frequency without losing nanoscale spatial resolution. The new system, called a quantum mixer, injects a second frequency into the detector using microwaves, enabling detection of signals with desired frequencies.
Sony Alpha a7 IV (Body Only)
Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.
Researchers at the University of Colorado Boulder and NIST have successfully demonstrated reading out signals from superconducting qubits using laser light, preserving the qubit's information. This breakthrough could enable the creation of a quantum internet, allowing for secure communication over long distances.
Researchers observe formation of ordered and tunable MZM lattice in naturally strained LiFeAs, characterized by strain-induced CDW stripes. The lattice density and geometry can be tuned using external magnetic fields, providing a promising platform for manipulating MZMs.
Rice University engineers have developed a novel approach to manipulating the magnetic and electronic properties of 2D materials by stressing them with contoured substrates. The technique, inspired by recent discoveries in twisted 2D materials, allows for unprecedented control over quantum effects.
Researchers at Colorado State University have developed a cobalt-based molecule that can detect extremely subtle temperature shifts inside the body, opening up new possibilities for medical imaging and therapy. The noninvasive probe uses radiofrequency waves to read out temperature signals from the body.
Scientists at Aalto University and Oak Ridge National Laboratory develop new method to detect Cooper pairs in unconventional superconductors, enabling unique understanding of quantum materials. This breakthrough represents a major step forward in developing quantum technologies.
Rigol DP832 Triple-Output Bench Power Supply
Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.
Researchers successfully created a two-body time-crystal system in an experiment that challenges our understanding of physics. They also found that time crystals can be used to build useful devices at room temperature, opening up new possibilities for quantum computing.
Researchers at TU Darmstadt have developed a scalable quantum network that enables secure key exchange and protection of sensitive information. The system uses entanglement-based time-bin coding to distribute photons to users, ensuring robust security against eavesdropping attacks.
The Berkeley Lab team has demonstrated a three-qubit native quantum gate, the iToffoli gate, with high fidelity of 98.26%. This breakthrough enables universal quantum computing and reduces circuit running times.
A team of scientists used a quantum simulator to study the behavior of a complex quantum system, finding that it exhibits characteristics similar to fluid dynamics. The research also showed that this phenomenon can be observed in the flights of bees, as well as in unusual stock market movements.
Researchers propose using quantum repeaters to regenerate signals and prevent data loss in ground-based quantum networks. Another approach involves taking quantum networks into the air via drones or satellites, enabling longer-distance transmission and greater flexibility.
Davis Instruments Vantage Pro2 Weather Station
Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.
Researchers at Argonne National Laboratory have created a new qubit platform using solid neon, which offers a robust environment for electrons and demonstrates competitive coherence times. This breakthrough could lead to the development of future quantum computers with improved performance.
The project explores symmetries underlying fundamental questions in computer science, statistics, and quantum information. Researchers aim to develop efficient numerical algorithms and new structural insights using a novel optimisation paradigm.
Researchers at the University of Copenhagen have developed a new position-based quantum encryption method that uses a person's geographical location to guarantee secure communication. This method makes it difficult for hackers to impersonate users and exploit online communications.
Scientists at Delft University of Technology have discovered one-way superconductivity using 2D quantum materials, enabling superconducting computing and reducing energy loss. This breakthrough could lead to faster electronics, greener IT systems, and significant energy savings.
Apple iPad Pro 11-inch (M4)
Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.
A research team from Yokohama National University demonstrates quantum error correction in spin quantum memories in diamond under a zero magnetic field. This achievement makes the quantum memory resilient against operational or environmental errors without the need for magnetic fields.
The discovery could lead to more compact computer memories and efficient technical components. Researchers used ultrafast laser pulses to create magnetic skyrmions, a type of swirling magnetism.
Researchers discovered that light can trigger magnetism in normally nonmagnetic materials by aligning electron spins. This breakthrough could enable the development of quantum bits for quantum computing and other applications.
Researchers at Dartmouth have built the world's first superfluid circuit using pairs of ultracold electron-like atoms, allowing for controlled exploration of exotic materials like superconductors. The circuit enables analysis of electron movement in highly controllable settings.
Apple Watch Series 11 (GPS, 46mm)
Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.
Researchers at Forschungszentrum Jülich successfully integrated a topological insulator into a conventional superconducting qubit, demonstrating a novel hybrid qubit. This breakthrough could lead to more robust and fast quantum computing systems.
Researchers at Princeton University have achieved an unprecedented level of fidelity in two-qubit silicon devices, paving the way for the use of silicon technology in quantum computing. The study's findings suggest that silicon spin qubits have advantages over other qubit types, including scalability and size limitations.
Physicists have made a peculiar discovery in which energy moves from a colder to a hotter region, creating counterintuitive edge currents. The research, published in Physical Review Letters, shows that these currents are remarkably robust and can occur in topologically trivial systems.
Scientists from Ruhr-University Bochum have improved the manufacturing process for quantum dots by creating a targeted arrangement on a wafer. The team discovered that the density of quantum dots was distributed concentrically due to the coating process, resulting in high-quality structures.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
Researchers at the University of Innsbruck have proposed a method to solve optimization problems using neutral atoms and four-qubit operations. The algorithm can be realized on existing quantum hardware by optimizing laser pulse durations in a feedback loop.
A new protocol called SPoTKD offers a secure way to transmit data without relying on expensive equipment or dedicated channels. Tiny microchips with self-powered clocks can create secure channels, making it possible for devices to power themselves and stay secure.
Researchers from the University of Seville have conducted a groundbreaking experiment demonstrating quantum contextuality without loopholes. The study uses atomic ions to show that certain probabilities have a limit, contradicting previous findings.
Recent research on gravitational wave detectors shows large objects can be shielded from environmental influences to become one quantum object. This decoupling enables measurement sensitivities impossible without it, advancing sensor technology.
Kestrel 3000 Pocket Weather Meter
Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.
A research team has demonstrated the potential of a new material based on rare earths as a photonic quantum system, showing interest in europium molecular crystals for quantum memories and computers. The material enables ultra-narrow optical transitions, enabling optimal interactions with light.
A research team at POSTECH has developed a weak-value amplification method to achieve quantum metrology precision without using entangled resources. This breakthrough enables the practical use of quantum metrology by verifying that entanglement is not an absolute requirement for reaching the Heisenberg limit.
The researchers created treelike shapes, a Möbius strip, and other patterns by controlling atomic interactions without physically moving the atoms. They demonstrated nonlocal interactions, where atoms at distant ends interact just as strongly as those near each other.
Researchers at NGI demonstrate improved spin transport characteristics in nanoscale graphene-based electronic devices, achieving up to 130,000cm²/Vs mobility. The study also reveals spin diffusion lengths approaching 20μm, comparable to the best graphene spintronic devices demonstrated to date.
Researchers at NIST have revived and improved the charge pumping method to detect single defects as small as one-tenth of a billionth of a meter. The new technique can indicate where defects are located in transistors, enabling accurate assessment of their impact on performance.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
A team of researchers from Ritsumeikan University developed an unprecedented stream cipher using chaos theory to create highly secure cryptographic systems. The new system is resistant to statistical attacks and eavesdropping, even against quantum computers, making it a promising solution for post-quantum era cryptosystems.
A €16 million project, PhotonQ, is developing a photonic quantum processor to process qubits and reduce error rates. The processor will enable rapid scaling to relevant qubit numbers for practical applications.
Researchers at MIT have developed ultrathin superconducting qubits using hexagonal boron nitride, enabling smaller devices with reduced interference. The material's defect-free structure reduces cross-talk, paving the way for thousands of qubits in a device.
Physicists at MIT have discovered a new type of qubit, where vibrating pairs of fermions can exist in two states at the same time. The qubits can maintain this state for up to 10 seconds, making them a promising foundation for quantum computers.
Aranet4 Home CO2 Monitor
Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.
Researchers have achieved 99% accuracy in quantum computing using silicon-based devices. The breakthrough enables the creation of large arrays of qubits capable of robust computations, overcoming a significant challenge in building reliable quantum computers.
Researchers achieved a key milestone toward developing a fault-tolerant quantum computer by demonstrating a two-qubit gate fidelity of 99.5% using electron spin qubits in silicon. They found that specific Rabi frequencies enabled universal operations and high accuracy in performing quantum calculations.
Physicist Guido Pagano has won a prestigious CAREER award from the National Science Foundation (NSF) to study quantum entanglement and develop new error-correcting tools for quantum computation. He aims to understand how measurement affects entangled systems and create tools to correct errors caused by quantum decoherence.
Fluke 87V Industrial Digital Multimeter
Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.
A team of researchers has developed a new technique to embed single atoms in silicon wafers, mirroring methods used to build conventional devices. The technique creates large-scale patterns of controlled atoms that can be manipulated and read out, enabling the construction of large-scale quantum devices.
Scientists successfully image a single ion in an ion trap system on nanosecond timescale, achieving resolution beyond 175 nm. The technique also demonstrates sub-10nm positioning accuracy and time resolution of 50 ns.
Physicists at Rice University have found telltale signs of antiferromagnetic spin fluctuations coupled to superconductivity in uranium ditelluride, a rare material promising fault-free quantum computing. The discovery upends the leading explanation of how this state of matter arises in the material.
Scientists at Aalto University found that Cooper pairs break in bursts with long periods of silence, and the rate of these events decreases over time. This discovery provides important clues about the source of energy that breaks Cooper pairs and could lead to improvements in superconductor devices.
DJI Air 3 (RC-N2)
DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.