Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Novel quantum refrigerator benefits from problematic noise

Scientists at Chalmers University of Technology have created a novel quantum refrigerator that utilizes problematic noise to cool down extremely low temperatures. The innovative design enables precise control over heat and energy flows, making it an essential component for scaling up quantum technology.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.

New light-based platform sets the stage for future quantum supercomputers

A team at Stanford University developed a new optical cavity architecture that enables efficient collection of single photons from single atoms, paving the way for million-qubit quantum computer networks. This breakthrough could lead to significant advances in materials design, chemical synthesis, and medical research.

FAU leaps ahead as state’s first university to host an onsite quantum computer

Florida Atlantic University will be the first university in Florida to host a large, dedicated quantum computer on site, aiming to accelerate and solidify the state's position as a leader in quantum computing. The university will collaborate with D-Wave Quantum Inc. to advance quantum computing education, research, and applied innovation.

Quantum error correction with logical qubits

A new project aims to develop robust logical quantum bits for scalable and fault-tolerant quantum computing. The snaQCs2025 project combines innovative simulation and integration methods to compensate for error susceptibility of physical qubits, bringing quantum computing closer to practical use.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

Tiny new device could enable giant future quantum computers

Researchers have developed a nearly 100 times smaller device that can efficiently control lasers required for thousands of qubits, unlocking potential for larger quantum computers. The device uses microwave-frequency vibrations to manipulate laser light with extraordinary precision.

Controlling triple quantum dots in a zinc oxide semiconductor

A team of researchers at Tohoku University has successfully created and electrically controlled triple quantum dots in zinc oxide (ZnO), a promising material for quantum computing. This breakthrough opens a new pathway to exploring complex quantum behaviors and developing potential architectures for quantum computation.

Princeton’s new quantum chip built for scale

The Princeton team designed a new qubit that lasts over 1 millisecond, three times longer than the best ever reported in a lab setting. This breakthrough enables efficient error correction and scalability for industrial systems, marking the largest single advance in coherence time in over a decade.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

A new dimension for spin qubits in diamond

Lillian Hughes advances quantum science by creating two-dimensional ensembles of entangled spin qubits in diamond, enabling metrological quantum advantage and high-sensitivity sensing. This breakthrough brings quantum precision closer to reality with solid-state materials like diamond.

Quantum jam sessions teach quantum and jamming

Kobe University's new web application combines quantum game theory with jazz improvisation to explore creativity. Users can interact in a 'quantum jam session', receiving real-time visual and auditory feedback on their strategies.

One step closer to quantum computers that work properly

A team of researchers at NTNU's Department of Physics has developed a method to monitor and adjust the frequency of quantum bits in real-time, making them more stable and reliable. This breakthrough is essential for building functional quantum computers.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Twice around to return home: A hidden reset button for spins and qubits

Researchers Tsvi Tlusty and Jean-Pierre Eckmann found a simple recipe to return rotating systems precisely to their starting point by rescaling the driving force and applying it twice. This discovery reveals that even complex rotations conceal a fundamental order, ensuring there is always a way to reset the system.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

Caltech team sets record with 6,100-qubit array

Researchers created the largest qubit array with 6,100 neutral-atom qubits trapped in a grid by lasers, demonstrating improved accuracy and scalability. The team successfully maintained superposition for over 13 seconds and manipulated individual qubits with high accuracy.

Shining a light on dark valleytronics

Scientists at OIST use advanced spectroscopy to track the evolution of dark excitons, overcoming the fundamental challenge of accessing these elusive particles. The findings lay the foundation for dark valleytronics as a field, with potential applications in quantum information technologies.

SFU physicists create new electrically controlled silicon-based quantum device

A team of researchers at Simon Fraser University has created a new type of silicon-based quantum device controlled by both electricity and light. The breakthrough demonstrates an electrically-injected single-photon source in silicon, clearing a major hurdle for building a scalable quantum computer. This development holds significant po...

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

How to build larger, more reliable quantum computers

Researchers at the University of California, Riverside, have made a breakthrough in building larger and more reliable quantum computers by linking multiple quantum chips. The team found that even imperfect links between quantum chips can produce a functioning fault-tolerant quantum system.

Robust isolated quantum spins established on a magnetic substrate

Researchers successfully realized a stable, isolated quantum spin on an insulating magnesium oxide surface placed over a ferromagnetic iron substrate. The MgO/Fe(001) structure, widely used in spintronics, enables the formation of isolated spins due to its lack of conduction electrons.

Meta Quest 3 512GB

Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.

A smart accelerator for qubits

Researchers at the University of Basel have developed a smart accelerator for qubits, increasing both speed and coherence time simultaneously. By exploiting spin-orbit coupling, they created a 'plateau' effect that reduces fluctuations and allows for faster operation without sacrificing coherence.

Sky & Telescope Pocket Sky Atlas, 2nd Edition

Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.

Smart amplifier enabler for more qubits in future quantum computers

Researchers at Chalmers University of Technology have developed a highly efficient amplifier that activates only when reading information from qubits. The amplifier consumes just one-tenth of the power consumed by the best amplifiers available today, reducing qubit decoherence and laying the foundation for more powerful quantum computers.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

Near-perfect defects in 2D material could serve as quantum bits

Scientists at Rice University have developed a scalable method to create high-performance single-photon emitters in carbon-doped hexagonal boron nitride, paving the way for practical quantum light sources. The findings overcome long-standing challenges in the field and set a new benchmark for qubit production.

Magically reducing errors in quantum computers

Researchers from The University of Osaka develop a method to prepare high-fidelity 'magic states' for use in quantum computers with less overhead and unprecedented accuracy. This breakthrough aims to overcome the significant obstacle of noise in quantum systems, which can ruin computer setups.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

Magnetism in new exotic material opens the way for robust quantum computers

Researchers have developed a new type of exotic quantum material that can maintain its quantum properties when exposed to external disturbances, paving the way for robust quantum computers. The breakthrough uses magnetism to create stability, making it an important step towards realising practical topological quantum computing.

DJI Air 3 (RC-N2)

DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.

Controlling quantum motion and hyper-entanglement

Researchers at Caltech successfully controlled the motion of individual atoms, encoding quantum information, and demonstrated hyper-entanglement in massive particles. This experiment could lead to advancements in quantum computation and precision clocks.

Majoranas on the move

The Delft team creates a systematic and deterministic way to engineer Majorana bound states using artificial atoms, allowing for the observation of edge and bulk states. They demonstrate the ability to move Majoranas between QDs, crucial for topological quantum computing.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

Overcoming the quantum sensing barrier

Researchers have demonstrated a new quantum sensing technique that surpasses conventional methods by counteracting the limitation of decoherence. The study's coherence-stabilized protocol allows for improved sensitivity and detection of subtle signals, with up to 1.65 times better efficacy per measurement.

New quantum ‘game’ showcases promise of quantum computers

A team of theoretical physicists from Colorado designed a new type of quantum game that scientists can play on a real quantum computer. The researchers tested their game out on the Quantinuum System Model H1 Quantum Computer, highlighting its potential capabilities.

Apple AirPods Pro (2nd Generation, USB-C)

Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.

Researchers demonstrate quantum computing's abilities in chemistry

Cleveland Clinic researchers successfully tested quantum computing's ability to simulate proton affinity, a fundamental chemical process critical to life. The study used machine learning applications on quantum hardware, achieving higher accuracy than classical computing in predicting proton affinity.

A router for photons

Harvard researchers have created a photon router that could plug into quantum networks to create robust optical interfaces for noise-sensitive microwave quantum computers. The breakthrough enables control of microwave qubits with optical signals generated many miles away, bridging the energy gap between microwave and optical photons.

Researchers achieve quantum computing milestone, realizing certified randomness

A team of researchers from JPMorganChase, Quantinuum, and the University of Texas at Austin have successfully demonstrated certified randomness using a 56-qubit quantum computer. This achievement has significant implications for cryptography, fairness, and privacy, as it enables the generation of truly random numbers that cannot be man...

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.

Device enables direct communication among multiple quantum processors

Researchers at MIT created a photon-shuttling interconnect that facilitates remote entanglement, a key step toward developing practical quantum computers. The device enables all-to-all communication between multiple superconducting quantum processors, paving the way for more efficient and scalable quantum computing.

Twisting atomically thin materials could advance quantum computers

Scientists at the University of Rochester have discovered a way to create artificial atoms within twisted monolayers of molybdenum diselenide, retaining information when activated by light. This breakthrough could lead to new types of quantum devices, such as memory or nodes in a quantum network.

With $2M in grants, Arizona engineers push toward a quantum computing future

Researchers at the University of Arizona are using two federal grants to develop novel areas in quantum information. They aim to improve measurement capabilities of quantum magnetic field sensors, which could impact navigation, medical imaging, and other fields. Additionally, they will work on developing quantum low-density parity-chec...

Zuchongzhi-3 sets new benchmark with 105-qubit superconducting quantum processor

Zuchongzhi-3 achieves quantum supremacy by outperforming classical supercomputers by 15 orders of magnitude, demonstrating the strongest quantum computational advantage in a superconducting system to date. The processor features 105 qubits and 182 couplers, with a coherence time of 72 μs and simultaneous gate fidelities exceeding 99%.

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

Mesoporous silicon: Semiconductor with new talents

Researchers at HZB have produced mesoporous silicon layers with tiny pores, revealing the electronic transport mechanism. The material has great potential for applications, including thermally insulating qubits for quantum computers. Disorder plays a key role in understanding charge transport.

When qubits learn the language of fiberoptics

Researchers developed a method to 'translate' optical signals to and from qubits, reducing cryogenic hardware needed. This breakthrough enables scalable quantum computers with increased qubit numbers, laying the foundation for room-temperature networks.

Apple iPad Pro 11-inch (M4)

Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.