Researchers developed composite and adiabatic pulses to improve single-qubit gate robustness, reducing control field error by nearly an order of magnitude. Their designs mitigated leakage and seepage, essential factors in assessing quantum operation fidelity.
Researchers found a way to use heat to toggle a crystal between two electronic phases, storing qubits in topologically protected states that could reduce decoherence-related errors. The discovery may lead to the creation of flash-like memory capable of storing quantum bits of information.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
Researchers have developed VECSELs with record output power and absolute frequency stability, overcoming the hurdle of spectral differences between glass fibers and quantum bits. These lasers enable low-loss transmission and precise frequency conversion for quantum internet applications.
A Helmholtz-Zentrum Dresden-Rossendorf research team introduces a new approach for transducing quantum information by harnessing the magnetic field of magnons within microscopic magnetic disks. This method could enable more efficient and effective control over qubits, paving the way for practical quantum computing applications.
A team of researchers has shown that quantum computers can solve a specific class of combinatorial optimisation problems much faster than classical computers. This is due to the ability of qubits to take on any value in between zero and one, allowing for exponential polynomial time complexities.
Researchers at ETH Zurich developed a new ion trap for larger quantum computers using static magnetic fields, overcoming previous limitations with oscillating fields. The Penning trap design allows for arbitrary transport and control of qubits, enabling future supercomputers.
The Princeton Plasma Physics Laboratory has opened a new Quantum Diamond Lab to study plasma processes for creating diamond material with unique properties. Scientists aim to harness this material for quantum computing, secure communication, and precise measurements, enabling breakthroughs in fields like medicine and energy.
Aranet4 Home CO2 Monitor
Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.
Researchers developed an approach called Quantum Noise Injection for Adversarial Defense (QNAD) to protect quantum computers from attacks. The method introduces noise into the quantum neural network, making it more accurate during an attack.
Researchers at UNSW Sydney have successfully encoded quantum information in four distinct ways using a single antimony atom. This breakthrough enables more flexibility in designing future quantum computing chips, with each method offering unique advantages and potential trade-offs.
Researchers at TU Darmstadt have successfully demonstrated a quantum-processing architecture with over 1,000 individually controllable atomic qubits. This breakthrough enables the development of highly beneficial applications in fields such as drug development and traffic optimization.
Scientists at Shanghai Institute of Microsystem and Information Technology enhance the photon-number-resolving capability of single-photon detectors by widening superconducting strips. This results in better dynamic range and fidelity, enabling true-photon-number resolution up to 10.
Apple Watch Series 11 (GPS, 46mm)
Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.
A new technique enables researchers to identify and control a greater number of atomic-scale defects in diamonds, which can be used to build larger systems of qubits for improved quantum sensing. This approach uses a specific protocol of microwave pulses to locate and extend control to additional defects.
Researchers found that a thin layer of magnesium significantly improves tantalum's purity and raises its operating temperature as a superconductor. This could lead to increased quantum information retention in qubits, ultimately benefiting quantum computing.
Researchers use advanced electron microscopy and computational modeling to understand tantalum oxide formation, which can impede qubit performance. The study reveals a 'suboxide' layer at the interface between tantalum and oxide, with ordered crystalline lattice features.
A team of researchers from the universities of Mainz, Olomouc, and Tokyo has successfully generated a logical qubit from a single light pulse that can correct errors. This breakthrough uses a photon-based approach to overcome the limitations of current quantum computing technology.
Physicists at the University of Colorado Boulder have discovered a way to create scenarios where information can remain stable in quantum computer chips, potentially leading to advances in quantum computing. The team's findings could also influence other fields, such as materials science and engineering.
Sony Alpha a7 IV (Body Only)
Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.
Researchers at ETH Zurich have discovered a potential platform for spin qubits in bilayer graphene, with ultra-long-lived valley states. The study finds that the valley degree of freedom in BLG is associated with quantum states that can survive for over half a second.
Researchers at Paul Scherrer Institute created solid-state qubits from rare-earth ions in a crystal, showing that long coherences can exist in cluttered environments. The approach uses strongly interacting pairs of ions to form qubits, which are shielded from the environment and protected from decoherence.
Scientists achieve room-temperature quantum coherence by embedding a chromophore in a metal-organic framework, enabling the creation of quintet state qubits with four electron spins. This breakthrough could lead to the development of multiple qubit systems at room temperature, revolutionizing quantum computing and sensing.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
A University of Oxford study has used machine learning to bridge the 'reality gap' between predicted and observed behavior in quantum devices. The approach enables accurate predictions and informs compensation approaches to mitigate unwanted effects of material imperfections.
Researchers explore quantum optical technology to solve scalability and accuracy issues in quantum computing, aiming to develop new drugs faster and more efficiently. Photon-based systems offer a solution by reducing physical components, increasing opportunities for scaling and stability.
Researchers combined diamond and lithium niobate onto a single chip to achieve high efficiency in coupling the two materials. This pairing enables stable and reliable qubits, critical for quantum communication networks and applications.
A Harvard University team has created the world's first logical quantum processor, which can encode up to 48 logical qubits and execute hundreds of gate operations. This breakthrough is a significant step toward reliable quantum computing and fault-tolerant quantum computation.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
Researchers have successfully addressed and detected single rare-earth ions within an ensemble of atoms in a nanoparticle, enabling efficient light-matter interaction. This discovery brings researchers closer to creating a robust system for low-loss and fast interface between nodes of the future quantum internet.
Scientists create a low-cost, room-temperature single-photon light source by doping optical fibers with ytterbium ions, paving the way for affordable quantum technologies. The innovation overcomes cooling system limitations, enabling applications in true random number generation, quantum communication and high-resolution image analysis.
A team from Argonne National Laboratory has extended the coherence time for a novel type of qubit to nearly 1,000 times better than the previous record. This achievement enables the qubit to perform thousands of operations with high precision and speed.
Researchers at Harvard John A. Paulson School of Engineering and Applied Sciences have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators, which could improve communications and offer new control for quantum computing. The technique also allows for acoustically-c...
DJI Air 3 (RC-N2)
DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.
Researchers at the University of Illinois have developed a procedure for measuring ytterbium-171 qubits that preserves them for future use, enabling long multistage calculations and multistage operations. This breakthrough paves the way for scalable neutral atom quantum computing.
A Harvard team has successfully developed a self-correcting quantum computer using neutral atom arrays, achieving near-flawless performance with extremely low error rates. The breakthrough enables the creation of large-scale, error-corrected devices based on neutral atoms.
Researchers developed a new method to estimate gradients and derivatives on quantum computers, enabling faster computations. This technique can be applied to various fields such as cryptography, optimization, and materials science.
Researchers have developed a method to reveal error locations in quantum computers, reducing correction time by up to ten times. The new approach uses real-time measurement to detect errors, converting them into erasure errors that can be easily corrected.
Researchers at IBS Center for Quantum Nanoscience created a novel electron-spin qubit platform assembled atom-by-atom on a surface, demonstrating ability to control multiple qubits. This breakthrough enables application of single-, two-, and three-qubit gates.
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.
A new study uses computer simulations to predict the formation process of spin defects in silicon carbide, an attractive host material for spin qubits. The team's findings represent an important step towards identifying fabrication parameters for spin defects useful for quantum technologies.
Researchers at MIT have developed a novel superconducting qubit architecture that can perform operations between qubits with high accuracy, exceeding 99.9% for two-qubit gates and 99.99% for single-qubit gates. The new design utilizes fluxonium qubits, which have longer lifespans than traditional transmon qubits.
Researchers developed an entanglement witness circuit to detect qubit entanglement in cloud-based services, overcoming limitations and enabling users to test for entangled qubits. The new framework EW 2.0 is twice as efficient at detecting entanglement.
Researchers at Indian Institute of Science create SQ-CARS, a scalable platform for advanced quantum experiments with superconducting transmon qubits, reducing cost and size.
A team of researchers at Princeton University has developed a new approach to building quantum repeaters, which are necessary for connecting quantum devices over long distances. The new device sends high-fidelity quantum information through fiber optic networks, enabling enhanced security and connections between remote quantum computers.
GoPro HERO13 Black
GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.
Researchers from Delft University of Technology have developed a chessboard-like method to address quantum dots, enabling the operation of the largest gate-defined quantum dot system ever. This breakthrough has significant implications for scalable quantum systems and quantum computing.
The Enchilada Trap enables scientists to build more powerful machines for quantum computing. It can store and transport up to 200 qubits using a network of five trapping zones, enabling researchers to test architectures with many qubits.
Theoretical physicists at Los Alamos National Laboratory have developed a new quantum computing paradigm that uses natural quantum interactions to process real-world problems faster than classical computers. The approach eliminates many challenging requirements for quantum hardware.
GQ GMC-500Plus Geiger Counter
GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.
A German-Chinese research team has successfully created a quantum bit in a semiconductor nanostructure by exciting a superposition state with two short-wavelength optical laser pulses. This achievement demonstrates coherent control of a high-orbital hole in a semiconductor quantum dot.
Songtao Chen, an assistant professor at Rice University, has won a prestigious NSF CAREER Award to study the interaction between photons and T center qubits. The research aims to address signal-loss during transmission, which is crucial for large-scale implementation of quantum communication.
A team at the University of Washington has made a breakthrough in quantum computing by detecting signatures of 'fractional quantum anomalous Hall' (FQAH) states in semiconductor materials. This discovery marks a significant step towards building stable qubits and potentially developing fault-tolerant quantum computers.
A new device from NIST scientists helps reduce noise in quantum computers by introducing a programmable toggle switch. This allows for more versatile quantum processors with clearer outputs and easier reprogramming, addressing long-standing challenges in quantum computing.
Researchers developed a new technique called zero noise extrapolation (ZNE) that allows noisy quantum computers to produce accurate results for specific calculations. This breakthrough could enable the use of quantum computing for cutting-edge physics problems and improve classical algorithms.
Kestrel 3000 Pocket Weather Meter
Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.
Scientists have successfully created conditions for mechanical qubits by engineering anharmonicity close to the ground state. By cooling a nanotube device to near absolute zero, researchers demonstrated a new mechanism that boosts nonlinear effects in the system, paving the way for quantum computing.
The team used an acoustic beamsplitter to demonstrate the quantum properties of phonons, showing they can be split and create interference between two phonons. This breakthrough is a crucial step toward creating a linear mechanical quantum computer using phonons instead of photons.
Researchers have developed a novel encoding scheme called critical Schrödinger cat code, which could revolutionize the reliability of quantum computers. This technique uses a hybrid regime to operate close to the critical point of a phase transition, resulting in enhanced error suppression capabilities.
Researchers used x-ray photoelectron spectroscopy to study the chemical profile of tantalum surface oxides, revealing different kinds of tantalum oxides at the surface. This discovery prompted a new set of questions on modifying interfaces to improve device performance and minimizing loss.
Researchers have developed a new scheme for controlling qubits in multilevel systems, enabling high-fidelity gate operations and overcoming interference issues. The approach uses a shuttle state to achieve equivalent coupling between any two energy levels, allowing for efficient control of quantum states.
Creality K1 Max 3D Printer
Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.
Researchers at UChicago's Pritzker School of Molecular Engineering have developed a method to constantly monitor noise around a quantum system and adjust qubits in real-time. The approach uses spectator qubits to track environmental changes and cancel out noise in vital data-processing qubits, improving the quality of data qubits.
Researchers at the University of Washington have developed a multifunctional interface between photonic integrated circuits and free space, allowing for simultaneous manipulation of multiple light beams. The device operates with high accuracy and reliability, enabling applications in quantum computing, sensing, imaging, energy, and more.
Researchers have experimentally demonstrated a new quantum information storage protocol to create complex entangled states like GHZ quantum states. They used nuclear spins surrounding a central ytterbium ion qubit to store and retrieve quantum information with enhanced resilience.
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
Researchers at Google Quantum AI have successfully observed non-Abelian anyons, a type of particle predicted to break certain rules in physics. This breakthrough enables the creation of topological quantum computers, which can perform robust operations despite noise and errors.
Engineers at the University of New South Wales have created a solution for overcrowded circuitry in quantum computer chips by developing jellybean quantum dots in silicon. The device allows for spaced-out qubits that can interact with each other, enabling more efficient quantum computing.
Scientists at Forschungszentrum Juelich develop bilayer graphene quantum dots with near-perfect symmetry, allowing for efficient long-distance coupling and robust spin-state detection. This breakthrough has significant implications for the realization of large-scale quantum computers.
A team of researchers at Bar-Ilan University has improved the basic computation unit of quantum computers by developing a tunable superconducting flux qubit. This innovation enables quantum computers to operate with hundreds of qubits simultaneously, leading to significant advancements in computational power and potential applications.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
Researchers identify potential application of quantum compression in edge computing, which could save storage space and network bandwidth. Quantum compression, a new concept, is being explored as an enabling tool for edge applications, with classical techniques compared to quantum approaches.
Researchers at ICFO have successfully teleported quantum information over 1km using a multiplexed quantum memory. The technique enables fast and reliable quantum communication over long distances, with potential applications in secure telecommunications.
Researchers at Argonne National Laboratory and University of Chicago developed a hybrid simulation process using IBM quantum computers to solve electronic structure problems. The new method uses classical processing to mitigate noise generated by the quantum computer, paving the way for future improvements.
Apple MacBook Pro 14-inch (M4 Pro)
Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.