Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Neon ice shows promise as new qubit platform

A team of scientists at Argonne National Laboratory has created a new qubit platform using neon gas, freezing it into a solid and trapping a single electron. The system shows great promise as an ideal building block for future quantum computers.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

The quest for an ideal quantum bit

A team of scientists at Argonne National Laboratory has developed a new qubit platform formed by freezing neon gas into a solid and trapping an electron there. The platform shows great promise in achieving ideal building blocks for future quantum computers, with promising coherence times competitive with state-of-the-art qubits.

New approach may help clear hurdle to large-scale quantum computing

A Harvard-led team created a new method for processing quantum information that allows for the dynamic change of atoms' layout during computation, expanding capabilities and enabling self-correction of errors. This approach uses entanglement to connect atoms remotely and can process exponentially large amounts of information.

Scientific advance leads to a new tool in the fight against hackers

Researchers at the University of Copenhagen have developed a new position-based quantum encryption method that uses a person's geographical location to guarantee secure communication. This method makes it difficult for hackers to impersonate users and exploit online communications.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Predicting the optical read-out of a qubit from first principles

The study uses many-body perturbation theory to predict the optical properties of negatively charged boron vacancies in hBN, showing that phonons are largely responsible for luminescence. The results suggest that this defect can be used as a nanoscale thermometer with high temperature sensitivity.

New hardware integrates mechanical devices into quantum tech

Researchers have developed a key experimental device for future quantum physics-based technologies by coupling nanomechanical oscillators with qubits. This enables the manipulation of quantum states in mechanical oscillators, generating quantum mechanical effects that could empower advanced computing and precise sensing systems. The de...

First hybrid quantum bit based on topological insulators

Researchers at Forschungszentrum Jülich successfully integrated a topological insulator into a conventional superconducting qubit, demonstrating a novel hybrid qubit. This breakthrough could lead to more robust and fast quantum computing systems.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.

In race to build quantum computing hardware, silicon begins to shine

Researchers at Princeton University have achieved an unprecedented level of fidelity in two-qubit silicon devices, paving the way for the use of silicon technology in quantum computing. The study's findings suggest that silicon spin qubits have advantages over other qubit types, including scalability and size limitations.

Intel and QuTech deliver first industrially manufactured qubit

Engineers from Intel and scientists from QuTech have successfully produced the first industrially manufactured qubit, leveraging industrial manufacturing facilities to overcome scalability hurdles. The achievement boasts high uniformity, few defects, and unprecedented device yield, paving the way for practical quantum computation.

Fluke 87V Industrial Digital Multimeter

Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.

“Hot” spin quantum bits in silicon transistors

The research team created silicon-based qubits using FinFET architecture that can store quantum information in two states at higher temperatures, allowing for scalability and integration into existing industry standards.

New world record for qubit storage

A UNIGE team has successfully stored a quantum bit for 20 milliseconds in a crystal-based memory. This achievement marks a major step towards the development of long-distance quantum telecommunications networks.

Toward a quantum computer that calculates molecular energy

Researchers unveil an algorithm that reduces statistical errors in quantum chemistry calculations, allowing for accurate ground state energy calculation. This enables chemists to develop new materials for sustainable goals such as nitrogen fixation and hydrolysis.

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.

Chaining atoms together yields quantum storage

Researchers at Caltech developed a novel approach for quantum storage using nuclear spins, which can effectively chain up several atoms to store information. The system utilizes ytterbium ions and surrounding vanadium atoms to create a reliable quantum memory.

Quantum errors made more tolerable

Researchers at ETH Zurich have successfully implemented a novel measurement scheme for finite-energy states, extending the coherence time of a trapped ion quantum oscillator by a factor of three. This breakthrough addresses a major challenge in quantum computing and brings us closer to enabling fault-tolerant quantum computers.

Researchers set record by preserving quantum states for more than 5 seconds

Researchers have achieved a record breakthrough by preserving quantum states for over 5 seconds, utilizing silicon carbide, a widely available material. This advancement enables the development of scalable and cost-effective quantum innovation, including potential applications in quantum communication networks and quantum computers.

Apple AirPods Pro (2nd Generation, USB-C)

Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.

€16 million for photonic quantum processors

A €16 million project, PhotonQ, is developing a photonic quantum processor to process qubits and reduce error rates. The processor will enable rapid scaling to relevant qubit numbers for practical applications.

New approach transports trapped ions to create entangling gates

Scientists at Georgia Tech Research Institute have demonstrated a new approach for transporting trapped ion pairs through a single laser beam to create entangled qubits. This method reduces the need for multiple optical switches and complex controls, potentially simplifying quantum systems.

Tiny materials lead to a big advance in quantum computing

Researchers at MIT have developed ultrathin superconducting qubits using hexagonal boron nitride, enabling smaller devices with reduced interference. The material's defect-free structure reduces cross-talk, paving the way for thousands of qubits in a device.

Vibrating atoms make robust qubits, physicists find

Physicists at MIT have discovered a new type of qubit, where vibrating pairs of fermions can exist in two states at the same time. The qubits can maintain this state for up to 10 seconds, making them a promising foundation for quantum computers.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

How big does your quantum computer need to be?

Researchers developed a tool to determine the minimum quantum computer size needed to solve problems like breaking Bitcoin encryption and simulating molecules. The estimated requirement ranges from 30 million to 300 million physical qubits, suggesting Bitcoin is currently safe from a quantum attack.

Towards compact quantum computers thanks to topology

Scientists have compared electron distribution in two semiconductors to develop stable topological quantum bits for quantum computing. Indium antimonide shows a low electron density below its oxide layer, which is advantageous for forming Majorana fermions and creating compact, efficient quantum computers.

Aranet4 Home CO2 Monitor

Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.

Quantum computing in silicon hits 99% accuracy

Researchers have achieved 99% accuracy in quantum computing using silicon-based devices. The breakthrough enables the creation of large arrays of qubits capable of robust computations, overcoming a significant challenge in building reliable quantum computers.

Snapshots from the quantum world

Researchers develop technique to study singlet/triplet ratio of electron pairs in charge-separated states, which could lead to advancements in organic solar cells and qubits. The 'pump-push-pulse' method allows for snapshots of spin state at different times.

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

A-list candidate for fault-free quantum computing delivers surprise

Physicists at Rice University have found telltale signs of antiferromagnetic spin fluctuations coupled to superconductivity in uranium ditelluride, a rare material promising fault-free quantum computing. The discovery upends the leading explanation of how this state of matter arises in the material.

Moments of silence point the way towards better superconductors

Scientists at Aalto University found that Cooper pairs break in bursts with long periods of silence, and the rate of these events decreases over time. This discovery provides important clues about the source of energy that breaks Cooper pairs and could lead to improvements in superconductor devices.

QuTech takes important step in quantum computing with error correction

Researchers at QuTech have successfully integrated high-fidelity operations on encoded quantum data with a scalable scheme for repeated stabilization. They demonstrate that it is possible to compute as well as encode and stabilize qubits, a crucial step towards developing fault-tolerant quantum computers.

How to transform vacancies into quantum information

Scientists have made a breakthrough in controlling the formation of vacancies in silicon carbide, a semiconductor material. The team's simulations tracked the pairing of individual vacancies into a divacancy and discovered the optimal temperatures for creating stable divacancies. This discovery could lead to highly sensitive sensors an...

Meta Quest 3 512GB

Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.

Collaborative project of quantum computer developers

The ATIQ project aims to develop reliable, user-friendly quantum computing demonstrators based on ion trap technology within 30 months. The consortium will optimize hardware for applications in chemistry and finance, paving the way for new approaches in credit risk assessment.

Crucial leap in error mitigation for quantum computers

Researchers at Lawrence Berkeley National Laboratory's Advanced Quantum Testbed demonstrated a method to reduce error rates in quantum algorithms, leading to more accurate and stable computations. The technique, known as randomized compiling, can suppress one of the most severe types of errors: coherent errors.

A new super-cooled microwave source boosts the scale-up of quantum computers

Researchers at Aalto University have developed a precise microwave source that operates at extremely low temperatures, potentially removing the need for high-frequency control cables. The new device could enable larger quantum processors with more qubits, increasing their potential applications in fields like computing and sensing.

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.

Shrinking qubits for quantum computing with atom-thin materials

Using 2D materials, researchers have built superconducting qubits that are significantly smaller than previous designs. The new capacitors store energy without interfering with qubit information storage. This breakthrough paves the way for smaller quantum computers and could lead to new applications of 2D materials.

GoPro HERO13 Black

GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.

Connecting the dots between material properties and qubit performance

Scientists discovered structural and surface chemistry defects in superconducting niobium qubits that may cause loss. The study pinpointed these defects using state-of-the-art characterization capabilities at the Center for Functional Nanomaterials and National Synchrotron Light Source II.

Photonic chip is key to nurturing quantum computers

A team of researchers at Bristol's Quantum Engineering and Technology Labs has developed a silicon photonic chip that can protect quantum bits from errors using photons. This breakthrough could lead to the creation of more powerful quantum computers by reducing the fragility of qubits.

Davis Instruments Vantage Pro2 Weather Station

Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.

All-nitride superconducting qubit made on a silicon substrate

Researchers developed an all-nitride superconducting qubit using niobium nitride on a silicon substrate, achieving long coherence times of up to 22 microseconds. The breakthrough paves the way for large-scale integration and potential applications in quantum computers and nodes.

Researchers develop new tool for analyzing large superconducting circuits

Researchers developed a new tool to analyze large superconducting circuits, allowing for the extraction of quantitative information previously inaccessible. The method uses a variational tight-binding approach to simulate circuit behavior, paving the way for further advancements in quantum computing.

Quantum networks in our future

Researchers propose a time-sensitive network control plane as a key component of quantum networks, enabling real-time control and low costs. Industry applications include cybersecurity through quantum key distribution, but standardization and certification are needed.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

Russian physicists mix classical light with half a photon on a qubit

A Russian-U.K. research team has proposed a theoretical description for the new effect of quantum wave mixing involving classical and nonclassical states of microwave radiation. The study builds on earlier experiments on artificial atoms, which serve as qubits for quantum computers and probes fundamental laws of nature.