Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Home-grown semiconductors for faster, smaller electronics

Researchers create transistors with an ultra-thin metal gate grown as part of the semiconductor crystal, eliminating oxidation scattering. This design improves device performance in high-frequency applications, quantum computing, and qubit applications.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

New viable means of storing information for quantum technologies?

Researchers have successfully demonstrated a new type of qubit that stores information in the oscillation amplitude of carbon nanotubes. This innovation has the potential to improve reliability in quantum computation by reducing interaction with the environment. However, experimental verification is still pending.

Harvard-led physicists take big step in race to quantum computing

Researchers have developed a programmable quantum simulator capable of operating with 256 qubits, a significant advancement in the field of quantum computing. The system enables the study of complex quantum processes and has already allowed for the observation of exotic quantum states of matter.

Unfinding a split electron

Researchers from Austria, Copenhagen, and Madrid found that a valid signal for Majorana zero modes, crucial for topological qubits, can be a false flag. By varying the nanowire setup, they discovered that a specific architecture causes a mimicking signal, leading to a crucial step forward in understanding nanowires.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.

Scientists discover new type of quasiparticle

Researchers at NUST MISIS and other institutions have experimentally proved the existence of a new type of quasiparticle - doublon topological excitations - in qubit chains. This discovery could be a step towards disorder-robust quantum metamaterials.

New invention keeps qubits of light stable at room temperature

Researchers from the University of Copenhagen have developed a new technique to store qubits of light at room temperature, a major breakthrough in quantum research. This innovation enables the storage of qubits for milliseconds instead of microseconds, saving power and resources.

Researchers realize unconventional coherent control of solid-state spin qubits

Researchers have developed an unconventional method for controlling solid-state spin qubits using anti-Strokes (AS) excitation, which reduces the energy requirement compared to conventional Strokes excitation. This breakthrough enables improved quantum information processing and high-sensitivity quantum sensing capabilities.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Quantum computing with holes

Researchers created a new qubit by manipulating hole spins in a germanium layer, enabling faster processing speeds and reduced magnetic field requirements. This breakthrough could lead to the development of more efficient quantum computers combining semiconductors and superconductors.

UArizona engineers demonstrate a quantum advantage

Researchers experimentally show that quantum methods have an advantage over classical counterparts in sensor classification, reducing errors by a small margin. The discovery opens up possibilities for real-world applications such as biomedical imaging and autonomous driving.

A path to graphene topological qubits

Researchers have successfully demonstrated the coexistence of magnetism and superconductivity in graphene, opening a pathway towards graphene-based topological qubits. This breakthrough finding enables the creation of Yu-Shiba-Rusinov states, which are crucial for achieving topological superconductivity.

Materials advances are key to development of quantum hardware

Researchers emphasize the need for material advances in quantum computing hardware to create complex qubits. The study explores various materials and proposes strategies for tackling technological challenges. Sophisticated control of these materials is crucial for achieving quantum advantage.

A molecule that responds to light

Researchers at KIT and Chimie ParisTech/CNRS create light-addressable qubit using europium(III) rare-earth ions, advancing quantum computer development. The molecule's nuclear spin levels can be polarized with light, enabling efficient processing of data in parallel.

Davis Instruments Vantage Pro2 Weather Station

Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.

Student's second-year homework picked up by Amazon quantum researchers

Researchers have optimized a second-year physics project to effectively double its capacity to correct errors in quantum machines. The simple yet ingenious change has been adopted by Amazon's quantum computing program and Yale University, enabling a shorter timeline for achieving scalable quantum computation.

Spin defects under control

The team successfully controlled spin defects in a layered crystal of boron nitride, even at room temperature. This achievement opens up new avenues for precise measurements of local electromagnetic fields, with potential applications in medicine, navigation, and information technology.

Researchers extend the life of a dipolar molecule

Harvard University researchers have extended the lifespan of a dipolar molecule, enabling stable qubits for quantum computing and simulation applications. The new method allows for controlled individual atom interactions, granting scientists a key resource for molecule-based quantum information processing.

Spin-to-charge conversion achieves 95% overall qubit readout fidelity

Researchers develop innovative spin-to-charge conversion method to achieve high-fidelity readout of qubits, surpassing traditional resonance fluorescence method with an error rate of 4.6%. This breakthrough enables the realization of fault-tolerant quantum computing and improves detection efficiency for quantum sensors.

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.

Semiconductor qubits scale in two dimensions

Researchers from QuTech at Delft University of Technology successfully demonstrated the control and coupling of four-qubit gates in a two-dimensional array of germanium-based semiconductor qubits. This achievement marks an important step toward dense, extended, two-dimensional semiconductor qubit grids.

Optical fiber could boost power of superconducting quantum computers

Physicists at NIST have developed a system that uses optical fiber to control and read out a superconducting qubit, enabling the creation of a more powerful quantum computer. The method allows for the conversion of light signals into microwaves, which can be used to store and process information.

Solving 'barren plateaus' is the key to quantum machine learning

Researchers have established theorems that guarantee whether a given machine learning algorithm will work as it scales up on larger computers. This breakthrough solves a key problem of useability for quantum machine learning and takes an important step toward achieving quantum advantage.

GoPro HERO13 Black

GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.

Army, Air Force fund research to pursue quantum computing

Researchers have made a breakthrough in developing passive quantum error correction, which could enable the creation of fault-tolerant quantum computers. The technology has the potential to revolutionize various fields, including artificial intelligence, materials science, and biochemical engineering.

Sweden's quantum computer project shifts up a gear

The Wallenberg Centre for Quantum Technology is doubling its annual budget to SEK 80 million, enabling the development of a more powerful quantum computer. The new funding will focus on improving qubit quality and software, with plans to increase the number of researchers from 60 to 100.

Breakthrough lays groundwork for future quantum networks

Researchers successfully transferred entangled qubit states through a communication cable, paving the way for future quantum networks. The team achieved entanglement amplification via the cable, using superconducting qubits, and demonstrated a system that can send entangled quantum states with minimal loss of information.

Quantum shuttle to quantum processor made in Germany launched

Germany's Forschungszentrum Jülich and semiconductor manufacturer Infineon join forces to develop a semiconductor-based quantum processor using 'shuttling' of electrons. The QUASAR project aims to scale up quantum computing for industrial production.

Meta Quest 3 512GB

Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.

Quantum systems learn joint computing

Researchers at Max Planck Institute of Quantum Optics successfully interconnected two qubits over a 60-meter distance, enabling the first prototype of a distributed quantum computer. The breakthrough opens up a new development path for distributed quantum computing, potentially leading to more powerful systems.

Quantum computer based on Rydberg atoms on the way to prototype

Scientists have successfully demonstrated a quantum computer demonstrator using Rydberg atoms, which can perform computing operations with high precision and scalability. The research uses sophisticated laser systems to control and entangle qubits, paving the way for the development of a functional quantum computer.

Blueprint for fault-tolerant qubits

Researchers at Forschungszentrum Jülich and RWTH Aachen University have proposed a circuit for quantum computers that inherently protects against common errors through passive error correction. This design enables the creation of a large number of qubits, crucial for building a universal quantum computer.

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

New physics rules tested on quantum computer

A team of researchers used a quantum computer to explore non-Hermitian quantum mechanics and demonstrated experimental results that are forbidden by regular Hermitian quantum theory. They also showed that entanglement can be altered in a way that is not possible under regular quantum physics.

Applying quantum computing to a particle process

A Berkeley Lab team successfully simulated a complex aspect of particle collisions using a quantum algorithm, accounting for neglected quantum effects. The researchers' approach meshes quantum and classical computing, allowing for efficient resources and improved accuracy.

UMass Amherst team helps demonstrate spontaneous quantum error correction

Researchers from UMass Amherst have successfully demonstrated spontaneous quantum error correction, a significant breakthrough in the development of powerful fault-tolerant quantum computers. This achievement paves the way for potential advances in fields like new materials discovery, artificial intelligence, and biochemical engineering.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

Beyond qubits: Sydney takes next big step to scale up quantum computing

Researchers at the University of Sydney and Microsoft have created a single chip that can generate control signals for thousands of qubits, revolutionizing quantum computing. This breakthrough resolves a key limitation to scaling up quantum machines, paving the way for more powerful computers.

New blueprint for more stable quantum computers

The researchers propose creating quantum bits by implanting magnetic atoms into a crystal lattice, enabling faster and more defined qubits. This design concept addresses the stability issue of traditional quantum computers, making them less error-prone and up to ten times faster.

CAREER awardee investigates quantum's 'sweet spot'

Boulat Bash demonstrates how quantum methods can substantially increase reliable information sending over covert channels. By applying quantum resources to sensing, he identifies the 'sweet spot' where high noise and low power levels are beneficial for covert operations.

Apple AirPods Pro (2nd Generation, USB-C)

Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.

Error protected quantum bits entangled

Researchers at the University of Innsbruck have successfully entangled two quantum bits coded on a lattice, a crucial resource for quantum computers. This achievement demonstrates key technology for future fault-tolerant quantum computers using lattice surgery.

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.

Ultra-thin designer materials unlock quantum phenomena

Researchers at Aalto University have designed an ultra-thin material that creates elusive Majorana quantum states, which could be key to making topological qubits. The team successfully trapped electrons together in a two-dimensional material, overcoming the challenge of noise tolerance in quantum computing.

In new step toward quantum tech, scientists synthesize 'bright' quantum bits

Researchers at Northwestern and UChicago develop a new method to create tailor-made qubits by chemically synthesizing molecules that encode quantum information into their magnetic states. This bottom-up approach could lead to extraordinary flexibility and control, paving the way for next-generation quantum technology.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

Optical wiring for large quantum computers

Physicists at ETH Zurich have demonstrated a new method for delivering multiple laser beams precisely to the right locations in a stable manner, allowing for delicate quantum operations on trapped atoms. The approach enables high-fidelity logic gates and scalability for large quantum computers.

Creality K1 Max 3D Printer

Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.

New algorithm could unleash the power of quantum computers

A new algorithm called Variational Fast Forwarding (VFF) can simulate quantum systems for longer periods than current quantum computers can handle. This allows scientists to tackle complex problems that were previously unsolvable due to decoherence, which degrades quantum coherence.

New detector breakthrough pushes boundaries of quantum computing

Physicists at Aalto University have developed a new detector that can measure energy quanta with unprecedented resolution, overcoming limitations in current state-of-the-art detectors used in quantum computers. The graphene bolometer achieves speeds of well below a microsecond and higher theoretical accuracy than voltage measurements.

Nikon Monarch 5 8x42 Binoculars

Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.

A new technique prevents errors in quantum computers

A new protocol allows for the protection and correction of fragile quantum information in case of qubit loss, addressing a crucial issue in quantum computing. This breakthrough could prove essential for future large-scale quantum computer development.

New method prevents quantum computers from crashing

Researchers have developed techniques to detect and correct loss of qubits in real-time, protecting fragile stored quantum information. The approach combines quantum error correction with correction of qubit loss and leakage, enabling robust quantum computing.

European project aims to scale up quantum computing technology

The European project SEQUENCE is developing electronic devices and circuits compatible with low temperature operation for scaling up quantum computers. The project combines Si CMOS, III-V, and 3D integration technologies to support superconducting and spin qubit-based quantum computing.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

A molecular approach to quantum computing

Researchers at Caltech demonstrate a molecular approach to quantum computing that leads to fewer errors, using molecules instead of atoms. The method involves rotating molecules in superposition, allowing for simultaneous correction of orientation and angular momentum shifts, which are prone to causing errors.