Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Adding bridges to stabilize quantum networks

Researchers propose a new strategy to stabilize quantum networks by rebuilding connections after each use, which leads to an eventual stable network state. The key is finding the optimal number of links to add, determined to be the square root of the number of users.

Quantum computers in silicon

The EQUSPACE consortium aims to create a scalable solution for silicon-based donor spin qubits, enabling long-term future for Europe's quantum industry. The project will develop materials science methods and atomic modifications to enhance the stability of qubits.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

NTU and NUS spin-off cutting-edge quantum control technology

The new startup, AQSolotl, has developed a quantum controller that enables users to control quantum computers easily using laptops and desktops. The technology, developed by NTU and NUS researchers, is designed to be scalable, adaptable, and cost-efficient.

Hey! Where’s my qubit?

Researchers have developed a practical way to detect 'leakage errors' in neutral atom platforms, removing a major roadblock for one branch of quantum computing. The detection method achieved 93.4% accuracy and enables researchers to flag and correct errors without disturbing the quantum state of the atoms.

GoPro HERO13 Black

GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.

Rethinking the quantum chip

Researchers at UChicago Pritzker School of Molecular Engineering have designed a new architecture for scaling up superconducting quantum devices. The modular design allows for flexible operability and enables the connection of any two qubits within a few nanoseconds, promoting high-fidelity quantum gates and entanglement.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Scientists develop novel high-fidelity quantum computing gate

Researchers at RIKEN Center for Quantum Computing successfully developed a novel double-transmon coupler (DTC) to enhance the fidelity of quantum gates. The DTC achieved high gate fidelity of 99.90% for a two-qubit device and 99.98% for a single-qubit gate, paving the way for fault-tolerant quantum computation.

Evidence that quantum computers can coordinate actions of moving devices

Researchers from the University of Kent have demonstrated that quantum information can be used to coordinate devices like drones or autonomous vehicles. The team conducted experiments using real qubits inside a quantum computer developed by IBM, showing that devices can continue to influence each other even after separation.

Compact error correction: towards a more efficient quantum ‘hard drive’

A three-dimensional quantum error correction architecture was discovered, which can handle errors scaling like L<sup>2</sup> (LxL) in two-dimensions. This breakthrough promises to enhance the reliability of quantum information storage and reduce physical computing resources needed for 'logical qubits', paving the way for a more compact

A rudimentary quantum network link between Dutch cities

Researchers at Delft University of Technology have successfully connected two small quantum computers between the Dutch cities of Delft and The Hague using a 25km quantum link. This milestone demonstrates a crucial step out of the lab and towards a future European quantum internet.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Major development successes in diamond spin photon quantum computers

The SPINNING project successfully demonstrated the entanglement of two registers of six qubits each over 20m distance with high fidelity. The spin-photon-based quantum computer achieved lower error rates than superconducting Josephson junctions, outperforming prominent models like Eagle and Heron.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

Enhanced wavelength conversion to advance quantum information networks

Researchers at Shanghai Jiao Tong University develop a novel method for broadband frequency conversion using X-cut thin film lithium niobate, achieving a bandwidth of up to 13 nanometers. This breakthrough enables on-chip tunable frequency conversion, opening the door to enhanced quantum light sources and larger capacity multiplexing.

High-dimensional photonics accelerates quantum computing

A new study by Prof. Yaron Bromberg and Dr. Ohad Lib from the Hebrew University of Jerusalem has made significant progress in quantum computing through photonic-measurement-based quantum computation. They successfully generated cluster states with over nine qubits at a frequency of 100 Hz, overcoming scalability barriers.

Davis Instruments Vantage Pro2 Weather Station

Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.

Constriction junction, do you function?

Scientists from Brookhaven National Laboratory have developed a new type of qubit that can be easily manufactured without sacrificing performance. The constriction junction architecture offers a simpler alternative to traditional SIS junctions, using a thin superconducting wire instead of an insulating layer.

Powerful quantum error correction with a beautiful geometry

A new quantum error correction approach called 'many-hypercube codes' has been proposed to overcome scalability issues in conventional methods. This innovative approach allows for high-performance fault-tolerant quantum computing by enabling logical gates to be run in parallel, similar to classical computers.

Toward a code-breaking quantum computer

MIT researchers have proposed a best-of-both-worlds approach to improve the speed of a 1994 quantum factoring algorithm while reducing memory requirements. The new algorithm is faster, requires fewer qubits, and has a higher tolerance to quantum noise.

Unconventional interface superconductor could benefit quantum computing

Researchers developed a new superconductor material that uses a delocalized state of an electron to carry quantum information. The material could be used to create low-loss microwave resonators for quantum computing, which is critical for reducing decoherence and increasing the stability of qubits.

Langbeinites show talents as 3D quantum spin liquids

An international team has discovered 3D quantum spin liquids in Nickel Langbeinites, a new class of materials. The discovery was made using neutron experiments and theoretical modelling, which revealed an island of liquidity at the centre of a strongly frustrated lattice.

Creality K1 Max 3D Printer

Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.

Stacked up against the rest

Researchers at Kyoto University have developed a new method to reduce optical interference and measure the quantum coherence time of moiré excitons, which are electron-hole pairs confined in moiré interference fringes. This breakthrough enables the realization of quantum functionality in next-generation nano-semiconductors.

Researchers develop general framework for designing quantum sensors

A protocol has been designed to harness the power of quantum sensors, allowing for fine-tuning of quantum systems to sense signals of interest. The framework uses a combination of qubits and bosonic oscillators to create sensors that are vastly more sensitive than traditional sensors.

Spin qubits go trampolining

Researchers at QuTech have demonstrated the creation of somersaulting spin qubits, which can be controlled using baseband signals and small magnetic fields. This breakthrough enables universal quantum logic and simplifies control electronics for future quantum processors.

DJI Air 3 (RC-N2)

DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.

A 2D device for quantum cooling

Researchers at EPFL's Laboratory of Nanoscale Electronics and Structures have fabricated a device that efficiently converts heat into electrical voltage at temperatures lower than outer space. The innovative device exploits the Nernst effect, a complex thermoelectric phenomenon, to achieve unprecedented performance.

Can a computer chip have zero energy loss in 1.58 dimensions?

Theoretical physicists at Utrecht University have discovered that fractals might hold the key to making electric currents flow without energy loss. By growing fractal structures on top of semiconductors, scientists have created materials with zero-dimensional corner modes and lossless one-dimensional edge states.

Sky & Telescope Pocket Sky Atlas, 2nd Edition

Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.

A quantum world on a silicon chip

A team of researchers has developed a platform to probe, interact with and control quantum systems in silicon. They used an electric diode to manipulate qubits inside a commercial silicon wafer, exploring how the defect responds to changes in the electric field and tuning its wavelength within the telecommunications band.

Discovery of one-dimensional topological insulator for qubits and more!

Researchers at Tohoku University have unveiled a groundbreaking discovery of a one-dimensional topological insulator (TI), a unique state of matter that differs from conventional metals, insulators, and semiconductors. This breakthrough has significant implications for the development of qubits and highly efficient solar cells.

Breakthrough may clear major hurdle for quantum computers

Researchers at Chalmers University of Technology have created a unique system that combats the trade-off problem between operation complexity and fault tolerance. The system uses harmonic oscillators to encode information linearly, offering a seamless gradient of colors and providing far richer possibilities than traditional qubits.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

A route to scalable Majorana qubits

The discovery enables experiments with Majoranas that were previously inaccessible, thanks to the flexibility of the new 2D platform. This breakthrough paves the way for the creation of networks of Majoranas and integration with auxiliary elements needed for control and readout.

New technique could help build quantum computers of the future

Researchers have developed a method to create and control optical qubits in silicon with high precision, enabling the fabrication of reliable quantum computers. This breakthrough could advance quantum computing and networking capabilities, paving the way for breakthroughs in human health, drug discovery, and artificial intelligence.

Calcium oxide’s quantum secret: nearly noiseless qubits

A team of researchers has found a way to create nearly noiseless qubits in calcium oxide, a promising material for quantum computing and communication. The discovery was made using theoretical and computational approaches, and the results show that the qubits can store information with extremely low levels of noise for an extended period.

Modular, scalable hardware architecture for a quantum computer

Researchers have developed a scalable, modular hardware platform that integrates thousands of interconnected qubits onto a customized integrated circuit. This 'quantum-system-on-chip' (QSoC) architecture enables precise control and tuning of a dense array of qubits, making it possible to achieve large-scale quantum computing.

Landmark study is step towards energy-efficient quantum computing in magnets

Researchers at Lancaster University and Radboud University Nijmegen have discovered a novel pathway to modulate and amplify spin waves at the nanoscale, paving the way for dissipation-free quantum information technologies. The study's findings could lead to the development of fast and energy-efficient computing devices.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

Helping qubits stay in sync

Researchers at Washington University in St. Louis have developed a new technique to enhance quantum entanglement stability in qubits. This breakthrough addresses the challenges of maintaining coherence and reliability in quantum systems.

How AI helps programming a quantum computer

Researchers at the University of Innsbruck developed a novel method using diffusion models to generate quantum circuits. The model can produce accurate and flexible circuits, including those tailored to specific quantum hardware connections.

New surface acoustic wave techniques could lead to surfing a quantum internet

Scientists at the University of Rochester have developed a technique for pairing particles of light and sound, allowing for faithful conversion of information stored in quantum systems. The method uses surface acoustic waves, which can be accessed and controlled without mechanical contact, enabling strong quantum coupling on any material.

Developed compiler acceleration technology for quantum computers

Researchers developed a probabilistic approach to generate optimal sequences for execution on quantum computers, reducing search time by several orders of magnitude. The new method enables efficient searches within classical computational resources, contributing to the realization of the quantum Internet and improved performance.

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

New super-pure silicon chip opens path to powerful quantum computers

Researchers at the University of Melbourne and Manchester have invented a breakthrough technique for manufacturing highly purified silicon, making it ideal for creating powerful quantum computers. The new technique uses qubits of phosphorous atoms implanted into crystals of pure stable silicon, extending the duration of notoriously fra...

Experiment opens door for millions of qubits on one chip

Researchers at the University of Basel and NCCR SPIN have successfully coupled two hole-spin qubits, enabling fast and precise controlled spin-flip operations. This achievement is a significant milestone in the quest for practical quantum computing, with millions of qubits on a single chip.

Apple AirPods Pro (2nd Generation, USB-C)

Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.

New system boosts efficiency of quantum error correction

Researchers at Pritzker School of Molecular Engineering developed a blueprint for a quantum computer that can efficiently correct errors using qLDPC codes and reconfigurable atom arrays. This new system reduces the overhead required for quantum error correction, enabling scaling up quantum computers.

MIT scientists tune the entanglement structure in an array of qubits

Researchers at MIT's EQuS group demonstrate a method to generate highly entangled states and shift between types of entanglement, including volume-law entanglement. This breakthrough offers a way to characterize a fundamental resource needed for quantum computing, enabling better understanding of information storage and processing.