Researchers develop pH-responsive helical hydrogel microswimmers that can traverse complex terrains and deliver drugs to targeted cells. The microswimmers change shape in response to environmental pH levels, enabling adaptive locomotion.
Researchers at ETH Zurich developed an autonomous excavator called HEAP to construct a 6-meter-high and 65-meter-long dry-stone wall. The excavator uses sensors, machine vision, and algorithms to place stones in the desired location, achieving a high level of precision and speed.
A team of UCLA researchers has developed a stable and fully solid-state thermal transistor that uses an electric field to control heat movement in semiconductor devices. The device boasts record-high performance with switching speeds over 1 megahertz and tunability of up to 1,300%.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
Researchers from Tsinghua University provide an overview of biofabrication methods for single-cell feature building blocks to reconstruct engineered living systems. The techniques aim to replicate natural tissues with precise control over microenvironment and structure, benefiting biomedicine applications.
Recent progress in metallic powders characterization, preparation, and reuse for laser powder bed fusion (L-PBF) enhances printing consistency and reduces costs. Novel cost-effective methods like fluidized bed and cold mechanically derived method are emerging to prepare powders.
Researchers introduce a game-changing technology that enables fabrication of high-resolution, transformable 3D structures at the micro/nanoscale using Two-photon polymerization-based (TTP-based) 4D printing. The technology has vast potential for applications in biomedicine, flexible electronics, soft robotics, and aerospace.
A new fabrication process for photo-thermoelectric imagers on soft sheets has been developed, enabling highly durable non-destructive inspections. The process simplifies the integration of multi-functional device substrates, contributing to the manufacturing of image sensor sheets.
The IISc team developed a fully indigenous GaN power switch, comparable to state-of-the-art switches, with a switching time of about 50 nanoseconds. The device's performance is suitable for applications such as power converters for electric vehicles and laptops, as well as wireless communications.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
The UNIST team successfully fabricated high-quality Te thin films without heat treatment at low temperatures, achieving perfect atom arrangement. The developed process enables precise thickness control and uniform deposition on wafer-scale, suitable for various electronic devices.
Scientists have successfully fabricated centimeter-scale transition metal dichalcogenide field-effect transistors with low ohmic contact resistance close to the quantum limit. The devices exhibited an ultrahigh current on/off ratio of ~10^11 at 15 K, outperforming previous values.
Scientists create a design that enables simultaneous presentation of photothermal, thermal conductive, and superhydrophobic properties, achieving record-high defrosting efficacy. The innovative assembly enhances de-icing and defrosting efficiency, reducing overall defrosting durations by 2-3 times.
The University of Missouri is using a $1 million grant to develop an Industry 4.0 lab, providing engineering students with hands-on learning experiences in the latest industrial revolution's technology-centered job market. The lab will integrate skills at a higher level and keep students at the state-of-the-art level for industry.
Cyanobacteria can solidify inorganic materials like CO2, making them valuable for sustainable construction. Researchers developed an additive co-fabrication manufacturing process using bacterial strains and robotics.
Meta Quest 3 512GB
Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.
Scientists at North Carolina State University have successfully grown high-quality thin films of the recently discovered superconductor material KTaO3. The researchers found that the material retains its superconducting properties even when exposed to extremely high magnetic fields.
Researchers developed a liquid nanofoam cushion that can absorb and dissipate high-force blows in collisions, reducing the risk of injury. The material is more flexible, comfortable to wear, and can be designed as lighter and smaller protective devices.
Researchers developed a new approach to create a wideband microwave absorption metamaterial using ultraviolet lasers, achieving high absorption performance and control over electrical and magnetic properties. The process enables mass production of complex structures without post-treatment.
Scientists have developed a metallic gel that allows for highly conductive 3D printing at room temperature. The gel, which is 97.5% metal, enables the creation of electronic components and devices with unprecedented conductivity.
Apple MacBook Pro 14-inch (M4 Pro)
Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.
Researchers have developed flexible photodetectors that can detect visible to long-wave infrared radiation, covering the full spectrum of greenhouse gases without complex optical components. The new detectors are simple and cost-effective to make, with production at room temperature.
Researchers have developed a new manufacturing pipeline to simplify and advance high-value manufacturing of tissue-compatible organs, reducing costs and increasing efficiency. This breakthrough aims to address the dire need for artificially engineered organs and tissue grafts, potentially saving thousands of lives in the UK.
Scientists create a novel thermoelectric module composed of both n-type and p-type Mg3Sb2-based alloys. The modules exhibit excellent matching TE and mechanical properties, enabling efficient power generation at medium temperatures.
Researchers developed a novel printing method that controls the precise deposition of bioink in embedding medium, achieving accurate and homogeneous structures. The method enables the creation of complex three-dimensional structures with multiple materials, which has potential applications in manufacturing heterogeneous tissue models.
Researchers have developed a simple method to produce large and very clean 2D samples from a range of materials using three different substrates. The kinetic in situ single-layer synthesis (KISS) technique allows for the production of air-sensitive 2D materials, overcoming the drawbacks of previous methods.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
Researchers at Nagoya University have developed a new technology to fabricate high-quality nanosheet films in about one minute. The method uses an automated film-forming process that produces neatly tiled monolayer films with no gaps between the nanosheets.
Researchers at City University of Hong Kong have developed a multifunctional additive that improves the efficiency and stability of perovskite solar cells by modulating film growth. The additive reduces defects, leading to higher power conversion efficiency and lower energy loss.
Researchers developed a new type of wearable sweat sensor that can analyze sweat for vital signs like dehydration and blood sugar levels. The device, called the 'sweatainer,' offers a glimpse into the future of health monitoring with its non-invasive technology.
Scientists create high-performance bulk magnesium diboride superconducting magnets with low-cost technique, exhibiting good critical current density and trapped magnetic field. The work paves the way for commercialization of MgB2 superconducting magnets.
Apple AirPods Pro (2nd Generation, USB-C)
Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.
Developed by University of Georgia researchers, the superfoam conducts electricity, cleans polluted water, and resists blood, microbes, and proteins. Its versatility makes it a valuable resource for clinicians and environmental remediation professionals.
The article discusses the fabrication and applications of van der Waals heterostructures (vdWHs), which have unique properties and potential for exploring condensed matter physics. Various strategies for fabricating vdWHs were developed in the past decade, leading to promising functionalities in diverse fields.
Scientists create a simple approach to fabricating highly precise 3D aperiodic photonic volume elements (APVEs) for various applications. The method uses direct laser writing to arrange voxels of specific refractive indices in glass, enabling the precise control of light flow and achieving record-high diffraction efficiency.
Scientists have created a method to produce synthetic spider silk with eightfold higher yields than previous methods, making it a promising material for sustainable clothing production. The new silk fibers retain the desirable properties of enhanced strength and toughness while being lightweight.
Researchers at Nagoya University have successfully synthesized barium titanate nanosheets with a thickness of 1.8 nanometers, the thinnest freestanding film ever created with ferroelectric properties. This achievement paves the way for the development of smaller and more efficient devices such as memories and capacitors.
Rigol DP832 Triple-Output Bench Power Supply
Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.
Researchers at DTU found that conventional materials like silicon cannot prevent backscattering in photonic systems, despite attempts to create topological waveguides. The study suggests that new materials breaking time-reversal symmetry are needed to achieve protection against backscattering.
Researchers at Kyoto University have successfully created silicon-based photovoltaics at room temperature using a hybrid PEDOT:PSS/silicon heterojunction. This breakthrough technology offers improved production speed and cost, with power generation efficiency above 10%. The new process has the potential to facilitate large-scale diffus...
Researchers at Duke University have produced the world's first fully recyclable printed electronics that replace hazardous chemicals with water in the fabrication process. The demonstration points to a path towards reducing environmental footprint and human health risks in the electronics industry.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
A UCLA-led team developed foldable robots using conductive materials, overcoming chip weight and rigidity issues. The OrigaMechs can sense, analyze and act with precision in extreme environments, making them suitable for disaster response and space exploration.
Researchers at King Abdullah University of Science & Technology (KAUST) successfully integrated two-dimensional materials on silicon microchips, achieving high integration density, electronic performance, and yield. The resulting hybrid devices exhibit special electronic properties that enable low-power consumption artificial neural ne...
A team of MIT researchers has created an 'unclonable' label system to combat counterfeit seeds in Africa, where fake seeds can cost farmers up to two-thirds of expected crop yields. The system uses biodegradable silk-based tags with unique codes that cannot be replicated.
Kestrel 3000 Pocket Weather Meter
Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.
The new technology enables compact, low-power, fast, and energy-efficient devices for fibre-optical communications, sensors, and future quantum computers. This breakthrough could lead to advancements in applications such as 3D imaging for autonomous vehicles and photonic-assisted computing.
The institute aims to shorten the cycle required to design, manufacture, and test parts that can withstand space travel conditions. It will develop detailed computer models of additively manufactured parts using digital twins.
Researchers developed a self-driven lab, AlphaFlow, that uses AI to optimize complex chemical reactions and discover new materials. The system significantly reduces the time needed to develop new chemistries from months to hours.
Researchers at Pusan National University have developed a novel solvent-resistant hole injection layer material, enabling the creation of efficient solution-processed OLED devices. The material exhibits high mobility and excellent film-forming properties, leading to improved efficiency and lifetime compared to existing materials.
The new technique allows for the production of a dozen different soft polymer material morphologies, including ribbons, nanoscale sheets, rods, and branched particles. By precisely controlling three sets of parameters during manufacturing, researchers can fine-tune the morphology of polymeric materials at the micro- and nano-scale.
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
The γ-MnO2 dual-core pair-hole fiber enables the production of an all-fiber mode-locked laser with a pulse width of about 1 ps and a repetition frequency of about 600 MHz. This fabrication scheme offers good stability and is suitable for combining other novel materials with specialty fibers, expanding ultrafast optics and sensing appli...
Chung-Ang University researchers develop a novel flexible supercapacitor platform with vertically integrated gold electrodes in a single sheet of paper. The design shows low electrical resistance, high foldability, and good mechanical strength, making it suitable for wearable devices.
TUS researchers develop novel method to create multi-walled CNT wiring on plastic films under ambient conditions, enabling flexible devices and energy conversion devices. The proposed method produces high-quality wires with varying resistance values.
Researchers created adaptive optical phantoms by combining multiple pigments to mimic target tissue's optical properties, successfully validating them in extensive experiments. The new platform enables broader band spectra for emerging hybrid modalities and novel instruments.
Researchers at MIT create a novel approach to building deformable underwater robots using simple repeating substructures. The system can assemble into various shapes and sizes, offering scalability and efficiency improvements over current technologies.
Apple Watch Series 11 (GPS, 46mm)
Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.
Researchers at KAUST have developed a sustainable method for creating high-performance porous membranes from plastic waste, using bio-based solvents to dissolve polyolefins. This process reduces the environmental footprint of industrial separations and creates access to fresh water.
Researchers from TIBI have developed an advanced electronic skin patch that provides simultaneous, continuous monitoring of multiple bodily parameters. The new E-skin patch offers enhanced flexibility, thermal cooling abilities, and fluid absorption over conventional substrates while demonstrating excellent biocompatibility and biodegr...
The Terasaki Institute for Biomedical Innovation developed a contact lens prototype that facilitates tear flow in response to normal eye blinking, relieving CLIDE symptoms. The lenses, with microchannels and square cross-sections, can guide tear flow and combat dry eye syndrome.
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.
A new approach fabricates specialized transistors that serve as the building block of a timing device, enabling enhanced integration and advancing microelectronics capabilities. This innovation repurposes data processing transistors into a 'clock' device, addressing supply chain weaknesses and enhancing chip security.
A CU research team has developed a method to transform medical images into incredibly detailed 3D models on the computer, which can be printed and used for surgical planning. The approach uses custom software to convert scan data into volumetric pixels, allowing for more accurate representations of human anatomy.
Researchers at Brookhaven National Laboratory have successfully discovered new materials using artificial intelligence and self-assembly. The AI-driven technique led to the discovery of three new nanostructures, expanding the scope of self-assembly's applications in microelectronics and catalysis.
Engineers at Diraq and UNSW Sydney discovered a new way to precisely control single electrons in quantum dots using electric fields, which is less bulky and requires fewer parts. This breakthrough technique can help achieve the goal of fabricating billions of qubits on a single chip for commercial production.
Researchers at Exciton Science have created perovskite solar cells with 21% efficiency, the best results ever recorded for a non-halide lead source. The novel use of lead acetate enables scalable and industrial-scale manufacturing.
Davis Instruments Vantage Pro2 Weather Station
Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.
Researchers fabricated Li-S batteries with ultra-long cycle life over 2000 cycles via multifunctional separator design. The novel hollow and hierarchically porous Fe3O4 nanospheres effectively regulate LiPSs behavior, achieving high sulfur utilization and excellent electrochemical performances.
Researchers have successfully fabricated bifunctional flexible electrochromic supercapacitors using silver nanowire flexible transparent electrodes. The devices can exhibit color changes to display energy status, offering potential for smart windows and wearable electronics. With excellent stability and high areal capacitance, these fl...
By incorporating hydrodynamics into their models, the researchers improved predictions of final structures compared to conventional computational models. This work may lead to the development of smart materials with controllable properties in response to external conditions.
MIT engineers create ultralight fabric solar cells that can generate 18 times more power-per-kilogram than conventional solar cells, making them ideal for wearable power fabrics or deployment in remote locations. The technology can be integrated into built environments with minimal installation needs.
Sony Alpha a7 IV (Body Only)
Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.
Researchers develop low-cost and eco-friendly method for high efficiency CIGSSe solar cells, achieving power conversion efficiency larger than 17%, by using aqueous spray deposition in air environment.