Researchers at National Institutes for Quantum Science and Technology developed a technique to decompose polytetrafluoroethylene (PTFE) into gaseous products using electron beam irradiation. This process reduces energy required by 50% compared to traditional methods, making large-scale recycling of fluoropolymers more viable.
Aranet4 Home CO2 Monitor
Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.
Scientists have identified a reliable method to achieve stabilization in compressed earth blocks using recycled glass particles and lime. Testing showed that a mix of 10% lime and 10% recycled glass produced the strongest blocks with no cracking under intense pressure.
Laser-generated nanoparticles offer a cleaner, scalable alternative to traditional chemical synthesis methods for electronics applications. The method, called laser ablation in liquids, produces surfactant-free, highly pure metal-based nanoparticles with tailored surface properties.
Researchers propose sparse-view irradiation processing VAM (SVIP-VAM) to reduce projection data and computation time. The method enables structure manufacturing with a reduced number of projections, increasing the feasibility of sparse-view printing.
Researchers found that low concentrations of SO2 and NO2 in flue gas improve CO2 capture stability, but high concentrations lead to decreased adsorption capacity and catalytic reforming ability. The study suggests that coating layers of calcium-containing compounds on Ni nanoparticles contribute to deactivation.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
Researchers at Carnegie Mellon University developed a low-cost, long-lasting indoor formaldehyde sensor with a unique polymer coating. The coating extends the sensor's half-life by 200% and enables it to regenerate when performance degrades.
A team at Binghamton University has developed a process to convert food waste into biodegradable plastic, reducing greenhouse gas emissions and offering a sustainable alternative. The process utilizes bacteria to synthesize polyhydroxyalkanoate (PHA) plastic, which can be harvested and shaped into various products.
The European Research Council has awarded three ERC Proof of Concept grants to Göttingen University professors, enabling the development of initiatives that can benefit Europe's economy and society. The projects focus on harnessing renewable energy, reducing chemical waste, and improving biomedical image analysis.
Twisted trilayer graphene creates a pattern that changes the material's properties and can turn it into a superconductor. Researchers used a microscope to probe the properties of supermoiré patterns, revealing new states of matter with precisely controllable properties.
GQ GMC-500Plus Geiger Counter
GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.
Researchers at Texas A&M University have developed a new type of adhesive that could improve the comfort and safety of wearable medical devices. The adhesive, made from polyelectrolyte-complex coatings, is water-based and has been shown to match the strength of commercial-grade adhesives while reducing skin irritation.
Researchers at Rice University developed a new glass coating that forms a thin, tough layer that reflects heat and resists scratches and moisture. The coating improves energy savings by 2.9% compared to existing alternatives, making it a promising solution for cities with cold winters.
MXene materials have been engineered to respond to light, enabling their use in soft robotics applications. This breakthrough could lead to the development of new types of robots that can change shape and function in response to external stimuli.
A new laser machining method enables high-precision patterned laser micro-grooving with root mean square errors below 0.5 μm. This technique allows for rapid and scalable manufacturing of custom microstructures, advancing applications in microfluidic devices, sensors, and heat dissipation systems.
The collaboration aims to increase print quality and consistency for large-format 3D printing, enabling applications in hydroelectric dams, oil and gas industries, and more. ORNL's slicing software and JuggerBot 3D equipment will be refined to process thermosets independently and simultaneously.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
Researchers developed pulsating, fabricated microneedles that can deliver medication into the body without causing pain. The PIDES method produces microneedles with a sharp and rigid tip, ideal for skin penetration, and demonstrates controlled time-dependent drug release profiles.
A new study maps the internal behavior of soft materials when deformed, revealing localized fracture events and heterogeneous flows. The findings challenge long-standing assumptions and provide valuable insights for improving manufacturing techniques.
A fully autonomous robotic system developed by MIT researchers can measure important material properties like photoconductivity, increasing the speed and precision of research. The system uses machine learning and robotics to analyze new semiconductors and optimize the development of more powerful solar panels.
Case Western Reserve University researchers have developed an environmentally safer type of plastic that can be used for wearable electronics, sensors, and other electrical applications without fluorine. The new material exhibits tunable ferroelectricity and flexibility, making it suitable for various electronic uses.
The ReSURF sensor can detect various pollutants, such as oils and fluorinated compounds, in water droplets using its unique self-powered and self-healing properties. It offers a sustainable solution for real-time water quality monitoring with capabilities to be applied in soft robotics and wearable electronics.
Nikon Monarch 5 8x42 Binoculars
Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.
Scientists at the University of Copenhagen have developed a way to transmit phonons through an ultra-thin membrane with almost no signal loss. This breakthrough has potential applications in quantum computing and sensing, where precise signal transfer is crucial.
Researchers at George Mason University conducted impact testing on utility poles made of different materials to determine acceleration and behavior during impact. The study, funded by the Electric Power Research Institute, aims to compare performance across various material types.
A new blue fluorescent molecule, TGlu, has been discovered that reaches record-breaking brightness and efficiency in both solid and liquid states. The molecule's design could cut down development time and cost for future applications.
Researchers at Pohang University of Science and Technology developed a novel dry adhesive technology using shape memory polymers, allowing for precise micro-LED chip transfer with minimal residue. The technology offers significant advantages over conventional methods, including high adhesion strength and easy release.
DJI Air 3 (RC-N2)
DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.
The study highlights the challenges of commercializing renewable polymers, but also emphasizes the potential of chemical modification to improve their properties for clinical use. The research aims to provide a comprehensive overview of these sustainable materials in biomedical practice.
Tina Rost will use a $800,000 NSF CAREER award to control the disorder in high-entropy ceramics, making them stronger and more heat-resistant. Her team aims to develop new materials with tailored electrical, magnetic, and mechanical properties using machine learning-enhanced analysis.
Researchers introduced hydrogen into high-quality Ge thin films, reducing hole density by three orders of magnitude. Low-temperature annealing repaired surface defects, further improving device performance and applicability.
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
Advanced computer simulations reveal shear deformations and internal mechanical stresses play a crucial role in grain growth and evolution. This discovery helps explain why real polycrystals behave differently than predicted and offers insights into designing stronger materials.
A team of Korean researchers has successfully recreated a golden fiber akin to that of 2,000 years ago using the pen shell cultivated in Korean coastal waters. The breakthrough reveals the scientific basis behind its unchanging golden color and demonstrates the potential of eco-friendly materials.
A nanometer-thin spacer layer has been inserted into exciplex upconversion OLEDs (ExUC-OLEDs) to improve energy transfer, enhancing blue light emission by 77-fold. This design enables the use of previously incompatible materials, paving the way for lightweight, low-voltage, and more flexible OLEDs.
Apple AirPods Pro (2nd Generation, USB-C)
Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.
Researchers develop biodegradable material that cools temperatures by up to 9.2°C and reflects 99% of sun's rays, reducing energy consumption by 20% a year in hot cities.
Scientists at Rice University develop a new method to align boron nitride nanotubes (BNNTs) in water using a common surfactant, creating ordered liquid crystalline phases. The discovery enables the production of transparent, robust films ideal for thermal management and structural reinforcement applications.
Scientists at KIT have produced an MOF in thin-film form that exhibits metallic conductivity, enabling new possibilities for electronic components and applications. The breakthrough was achieved using a self-driving laboratory and precise control over crystallinity and domain size.
Scientists at Rice University have developed a scalable method to create high-performance single-photon emitters in carbon-doped hexagonal boron nitride, paving the way for practical quantum light sources. The findings overcome long-standing challenges in the field and set a new benchmark for qubit production.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
Researchers have developed a method to transform polyethylene terephthalate (PET) plastic waste into paracetamol using genetically reprogrammed E. coli bacteria. The new process creates virtually no carbon emissions and can be completed in under 24 hours.
Researchers at ETH Zurich have created a living material that can absorb CO2 from the air through photosynthesis and store it in a stable mineral form. The material, made with cyanobacteria, can be shaped using 3D printing and requires sunlight, water, and nutrients to grow.
A research team at TU Wien has demonstrated how electrical current can be generated using 'traffic jam of electrons' in certain materials. By incorporating additional immobile charge carriers into the material, they were able to create a significant improvement in thermoelectric properties.
Researchers Mostafa Bedewy and Ahmed Aziz Ezzat are advancing nanomanufacturing by using machine learning to control the formation of nanoparticles and grow carbon nanotubes. The team aims to reveal which nanoparticles act as seeds for growing nanotubes, a key step towards creating ideal high-density structures.
Apple iPad Pro 11-inch (M4)
Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.
International Journal of Extreme Manufacturing (IJEM) achieves a new Impact Factor of 21.3, surpassing 20 for the first time and maintaining its position as top journal in the field. IJEM has attracted submissions from 853 institutions in 81 countries.
Researchers at ETH Zurich have developed a novel solution for image sensors, utilizing lead halide perovskite to capture every photon of light. This allows for improved color recognition and higher resolution, as well as advantages in hyperspectral imaging.
Researchers have developed a technique to observe phonon dynamics in nanoparticle self-assemblies, enabling the creation of reconfigurable metamaterials with desired mechanical properties. This advance has wide-ranging applications in fields such as robotics, mechanical engineering, and information technology.
Creality K1 Max 3D Printer
Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.
The Beckman Institute team created a computational model that predicts how materials self-organize to give rise to new textures and properties. By understanding the chemical 'recipe' of polymer manufacturing, manufacturers can design and simulate materials with built-in patterns, enhancing toughness and reducing weight.
Bioengineering researchers at Harvard John A. Paulson School of Engineering and Applied Sciences developed a soft, thin, stretchable bioelectronic device that can be implanted into a tadpole embryo's neural plate, recording electrical activity from single brain cells with millisecond precision.
A team from Institute of Science Tokyo has developed a postfunctionalization technique allowing for the incorporation of phosphonate esters under visible light conditions. This breakthrough paves the way for a broader range of polymer modifications, enabling the creation of novel polymer architectures with unique properties.
Apple MacBook Pro 14-inch (M4 Pro)
Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.
Fraunhofer Institute for Applied Solid State Physics launches first room-temperature quantum accelerator, enabling energy-efficient hybrid quantum-classical computing. The QB-QDK2.0 system uses synthetic diamond substrates and NV centers to create stable qubits for industrial applications.
MIT engineers developed a new resin that turns into two different solids depending on the type of light, enabling the creation of complex structures with easily dissolvable supports. This method speeds up the 3D-printing process and reduces waste by allowing for recycling and reuse of the supports.
Researchers developed self-propelled ferroptosis nanoinducers to enhance cancer therapy by inducing programmed cell death. The nanotherapeutics exhibited enhanced diffusion and deep tumor penetration while maintaining biocompatibility.
Empa researchers have developed a novel deposition process for piezoelectric thin films using HiPIMS, producing high-quality layers on insulating substrates at low temperatures. The technique overcomes the challenge of argon inclusions by timing the voltage application to accelerate desired ions.
GoPro HERO13 Black
GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.
Himanshu Jain, Lehigh University professor of materials science and engineering, received an honorary doctorate from the University of Pardubice in the Czech Republic. The recognition honors his influential research on glass materials and leadership in advancing graduate education.
A team of researchers at Texas A&M University has received a $1.6 million grant to develop a system for rapidly accelerating the certification process of 3D-printed critical components used in military applications.
Researchers have demonstrated a new technique using lasers to create ceramics that can withstand ultra-high temperatures. The technique allows for the creation of ceramic coatings, tiles, or complex three-dimensional structures, enabling increased versatility in engineering new devices and technologies.
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.
Researchers created a soft robotics technology that can identify damage, pinpoint its location, and autonomously initiate self-repair. The system uses a multi-layer architecture featuring liquid metal microdroplets, thermoplastic elastomer, and electromigration to melt and seal damaged areas, effectively self-healing the wound.
Researchers at Rice University have successfully created a genuine 2D hybrid material called glaphene by chemically integrating graphene and silica. The new material exhibits unique properties, including new electronic and structural behavior, due to the interaction between its layers.
Researchers discovered ferroelectric phenomena at a subatomic scale in Brownmillerite, overcoming collective atomic vibrations limitations. This property enables selective domain formation within tetrahedral layers when an electric field is applied.
Sony Alpha a7 IV (Body Only)
Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.
Researchers at Rice University have developed a new method to fabricate ultrapure diamond films for quantum and electronic applications. By growing an extra layer of diamond on top of the substrate after ion implantation, they can bypass high-temperature annealing and generate higher-purity films.
Materials researchers at Harvard have created a way to produce natural rubber that retains its stretchiness and durability while improving its ability to resist cracking. The new material is four times better at resisting slow crack growth during repeated stretching and 10 times tougher overall.
Researchers developed AI system that detects 'fingerprint' from 3D printed parts, tracing origin to specific machine. This technology has major implications for supplier management and quality control.
Davis Instruments Vantage Pro2 Weather Station
Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.
The new 3D-printed device, STOMP, enhances tissue-engineering methods by allowing for precise control over cell types and spatial arrangement. This enables scientists to model complex diseases and recreate natural habitats of cells, paving the way for advancements in biomedical research.
A new membrane developed by MIT researchers separates different types of fuel based on their molecular size, eliminating the need for energy-intensive distillation. The membrane can efficiently separate heavy and light components from oil, and is resistant to swelling.
Researchers from Florida Atlantic University and the German Electron Synchrotron mapped the internal structure of blacktip sharks in unprecedented detail, discovering a microscopic 'sharkitecture' composed of densely packed collagen and bioapatite. This intricate structure gives cartilage surprising strength while allowing flexibility.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
Researchers have developed thin films that can compress infrared light, improving its propagation distance and wavelength range. The technology has potential applications in thermal management, molecular sensing, and photonics.