Researchers develop a coating strategy using lignin nanoparticles to stabilize an oil-in-water emulsion, forming a multifunctional coating that enhances paper performance while maintaining environmental compatibility. The coated paper exhibits improved barrier properties, mechanical strength, and biodegradability.
LIST's patented infrared welding process enables rapid assembly of thick carbon-fibre-reinforced thermoplastic components, reducing weight, costs and environmental impact. The innovation is estimated to reduce CO2 emissions by 12.5 tonnes per wing rib.
Researchers at the University of Nottingham created intricate 3D printed surface textures that preferentially bounce incident particles in particular directions. This helps keep unwanted particles out of the way, allowing useful particles like atoms to be delivered more efficiently.
Apple Watch Series 11 (GPS, 46mm)
Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.
Researchers at Nanjing University of Aeronautics and Astronautics created an active metal metamaterial that can bend and recover its shape, enabling aircraft wings to morph smoothly in flight. The material is lightweight, strong, and capable of adjusting its shape on demand.
Researchers created an ultrathin hydrogel electrode that can track vital signals without interruption, overcoming previous dehydration, freezing, and mechanical fragility issues. The new material forms a flexible layer that can withstand extreme temperatures and retain water content over time.
Researchers create a new method for laser-based powder bed fusion that achieves unprecedented lattice walls and surfaces while reducing memory demand. The approach enables the high-fidelity fabrication of microscale shell lattices with improved strength and toughness.
The University of Oklahoma researcher is working on a project using inverse design techniques and AI to create advanced materials that can quickly switch between conductive and insulating states. The goal is to reduce uncertainty in the discovery process and create a scalable material-design methodology.
Scientists at Tsinghua University introduce a new technique to carve complex shapes on material surfaces, enabling more design freedom and efficiency in surface design. The method uses high-speed vibrations to create convex microstructures that can change how a surface interacts with its environment.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
Researchers explore ways to understand and control multiple errors affecting machine tool accuracy, combining traditional models with data-driven approaches and digital twin technology. This enables more integrated systems that can monitor themselves, predict changes, and adjust behavior automatically.
Researchers test plastination on Western red cedar to create a strong and durable composite material, reducing water absorption by nearly 60% and increasing surface hydrophobicity. The technique offers a powerful alternative to traditional wood preservatives without compromising environmental performance.
Researchers have discovered a novel approach to converting waste carbon into useful products using porous separators called diaphragms. These diaphragms can withstand the harsh conditions of the process and maintain efficiency over an extended period, making them a viable alternative to existing membranes.
Researchers explore Field-assisted Additive Manufacturing for micro/nano device fabrication, enabling targeted motion, cell growth, and flexible electronics. The technology holds promise for industries such as biomedical engineering and microrobotics.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
Global experts discuss the future of additive manufacturing in various applications, including bioprinting living tissues and creating smart consumer products. Researchers showcase advancements in machine learning, real-time sensing, and multi-material 3D printing.
A UH crystals expert has shown how to bend and twist crystals without physical force, using a molecule called a tautomer. This discovery has potential applications in drug delivery and material properties, such as optoelectronics and soft robotics.
A new post-processing route improves tensile strength and ductility in 3D-printed alloys by combining deep cryogenic treatment and laser shock peening. This method transforms the microscopic structure of 3D-printed metals, relieving internal stresses and enhancing mechanical resilience.
Researchers have developed flexible electrodes that mimic skin's softness and stretchability, enabling stable high-quality signals. Composite designs combining metallic systems are being explored to balance flexibility, conductivity, and transparency.
Research finds that surface roughness influences the formation and size of hydrogen-related defects in iron, leading to a new approach to material design. The study provides fundamental understanding of hydrogen embrittlement mechanisms and could reduce life-cycle costs of hydrogen technologies.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
Scientists have developed an end-to-end microbial process converting renewable plant oils into sustainable polyesters comparable to petroleum-based plastics. The two-step process achieved record-setting yields and productivity, paving the way for a scalable and environmentally viable alternative to fossil fuels.
Southwest Research Institute (SwRI) has completed its Center for Accelerating Materials and Processes (CAMP) facility, enabling faster production of high-speed propulsion systems. The new facility will focus on demonstrating more efficient techniques for manufacturing these systems.
Researchers develop flexible batteries with internal voltage regulation using liquid metal microfluidic perfusion and plasma-based reversible bonding techniques. This technology addresses limitations of traditional rigid batteries.
The Society for the Advancement of Material and Process Engineering has awarded Oak Ridge National Laboratory the 2025 SAMPE Organizational Excellence Award. The award recognizes ORNL's extraordinary contributions to advanced materials and processes, enabling breakthroughs in industries such as aerospace and automotive.
Apple AirPods Pro (2nd Generation, USB-C)
Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.
Researchers successfully etched hafnium oxide films at atomic-level precision and smoothness without halogen gases. The new method uses nitrogen and oxygen plasmas to form volatile byproducts, resulting in reduced surface roughness and improved device performance.
Researchers at Harvard SEAS have developed a gentler, more sustainable way to break down keratins and turn leftover wool and feathers into useful products. The process uses concentrated lithium bromide to create an environment favorable for spontaneous protein unfolding.
Researchers developed novel artificial bone scaffolds with high deformation recovery capabilities, exceeding those of natural bone and conventional metallic scaffolds. These scaffolds allow for flexible adjustments of properties like strength and modulus to meet specific implantation site requirements.
Davis Instruments Vantage Pro2 Weather Station
Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.
Researchers are making progress in overcoming technical hurdles to create layered structures, continuous gradients, and fully three-dimensional architectures with programmable material variation. Optimized laser parameters and build sequences can enhance strength, control heat flow, and improve energy absorption.
Researchers develop a method to transform spin-glass-like quasicrystals into ferromagnetic materials with tunable magnetic properties and strong magnetocaloric response. The technique enables expanded electron-to-atom ratios, unlocking new possibilities for designing high-performance magnetic refrigeration materials.
A new magnet manufacturing process has been developed that produces strong permanent magnets quickly and uses less energy and is less expensive. The technique, called friction stir consolidation, eliminates porosity in the magnetic material and reduces oxidation.
Apple MacBook Pro 14-inch (M4 Pro)
Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.
Researchers have developed a smart hydrogel surface that can instantly recognize whether it's in contact with oil or water and switch its behavior to separate the two. The surface achieves a record-breaking separation speed of 17,750 liters per square meter per hour, three to five times faster than most current membranes.
Researchers at Texas A&M University have developed a smart plastic that can self-heal and adapt to extreme conditions, making it ideal for aerospace and automotive applications. The material's unique properties allow it to restore its shape after deformation, improve vehicle safety, and reduce environmental waste.
Researchers at the University of Missouri have created a more efficient method for manufacturing computer chips using ultraviolet-enabled atomic layer deposition (UV-ALD). This approach reduces the number of manufacturing steps, saving time and materials, while also minimizing the use of harmful chemicals.
Apple iPad Pro 11-inch (M4)
Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.
Researchers at Washington University in St. Louis have developed a new type of bioplastic, called LEAFF, which is strong, biodegradable, and printable. This innovation uses cellulose nanofibers to address the limitations of current bioplastics and has potential applications for sustainable packaging.
Researchers developed a new method for building powerful, compact energy storage devices using thin-film supercapacitors without metal parts. The device can output 200 volts, equivalent to powering 100 LEDs for 30 seconds or a 3-watt bulb for 7 seconds.
Laser-generated nanoparticles offer a cleaner, scalable alternative to traditional chemical synthesis methods for electronics applications. The method, called laser ablation in liquids, produces surfactant-free, highly pure metal-based nanoparticles with tailored surface properties.
Researchers developed a novel fabrication method for thin-film temperature sensors that operate across an exceptionally wide temperature range, from –50 °C to 950 °C. The technique eliminates the need for complex protective layers, making it faster and cheaper to produce sensors.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
Researchers propose sparse-view irradiation processing VAM (SVIP-VAM) to reduce projection data and computation time. The method enables structure manufacturing with a reduced number of projections, increasing the feasibility of sparse-view printing.
A new laser machining method enables high-precision patterned laser micro-grooving with root mean square errors below 0.5 μm. This technique allows for rapid and scalable manufacturing of custom microstructures, advancing applications in microfluidic devices, sensors, and heat dissipation systems.
The article discusses the use of solution-processed 2D materials to fabricate memristors, offering a scalable alternative to traditional methods. Recent breakthroughs have overcome manufacturing limitations, producing larger and less-damaged nanosheets with improved device performance.
Tina Rost will use a $800,000 NSF CAREER award to control the disorder in high-entropy ceramics, making them stronger and more heat-resistant. Her team aims to develop new materials with tailored electrical, magnetic, and mechanical properties using machine learning-enhanced analysis.
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
International Journal of Extreme Manufacturing (IJEM) achieves a new Impact Factor of 21.3, surpassing 20 for the first time and maintaining its position as top journal in the field. IJEM has attracted submissions from 853 institutions in 81 countries.
MIT engineers developed a new resin that turns into two different solids depending on the type of light, enabling the creation of complex structures with easily dissolvable supports. This method speeds up the 3D-printing process and reduces waste by allowing for recycling and reuse of the supports.
Empa researchers have developed a novel deposition process for piezoelectric thin films using HiPIMS, producing high-quality layers on insulating substrates at low temperatures. The technique overcomes the challenge of argon inclusions by timing the voltage application to accelerate desired ions.
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.
Researchers have demonstrated a new technique using lasers to create ceramics that can withstand ultra-high temperatures. The technique allows for the creation of ceramic coatings, tiles, or complex three-dimensional structures, enabling increased versatility in engineering new devices and technologies.
Researchers from Empa developed machine learning algorithms to optimize laser-based manufacturing techniques, reducing preliminary experiments by two-thirds. They also implemented real-time optimization using field-programmable gate arrays (FPGAs) for improved welding processes.
Researchers at Zhejiang University developed a novel 3D-printed hydrogel that can easily switch its Young's modulus from kPa to GPa through on-demand crystallization. The hydrogel exhibits a hardness of 86.5 Shore D and a Young's modulus of 1.2 GPa, surpassing current 3D-printed hydrogels.
A new bilayer metasurface, made of two stacked layers of titanium dioxide nanostructures, has been created by Harvard researchers. This device can precisely control the behavior of light, including polarization, and opens up a new avenue for metasurfaces.
Professor Yousung Jung's team uses LLMs to accurately predict and explain material synthesizability, overcoming limitations of existing methods. This technology is expected to accelerate material design and reduce development time for the semiconductor and secondary battery industries.
Rigol DP832 Triple-Output Bench Power Supply
Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.
Researchers at Ateneo de Manila University discover evidence of advanced seafaring and boatbuilding in the Philippines and Island Southeast Asia dating back to around 40,000 years ago. Microscopic analysis of stone tools reveals clear traces of plant processing, indicating a high level of technological sophistication.
Researchers developed a new process to create high-performance polymer blends with improved mechanical properties. The process forms stable nanocrystalline layers at the interfaces between different polymer phases, enhancing the transfer of mechanical stresses and increasing tensile properties.
A new study by UC Davis engineers and economists finds that producing materials like steel, plastics, and cement inflicts $79 billion a year on the global climate. The team calculated climate costs using the Environmental Protection Agency's Social Cost of Carbon standard.
Grain boundaries, common defects in polycrystalline materials, can migrate unidirectionally without a net driving force, exhibiting directionality. This phenomenon, similar to the unidirectional rotation of a Brownian ratchet, challenges traditional views on grain boundary mobility.
Piezoelectric materials are used in sonar and ultrasound applications, but can deteriorate due to heat and pressure. Researchers have developed a technique to depole and repole these materials at room temperature, allowing for easier repair and paving the way for new ultrasound technologies.
Nikon Monarch 5 8x42 Binoculars
Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.
Researchers create bioinspired directional structures to inhibit the wetting of molten droplets on super-melt-philic surfaces at high temperatures. The structures provide anisotropic energy barriers, hindering the movement of water and preventing wetting.
Scientists have developed a nanocomposite material with sodium carbonate and nanocarbon to capture carbon dioxide from industrial emissions. The new material shows high CO2 capture capacity and can be regenerated for up to 10 cycles, reducing energy consumption.
A team of researchers from Drexel University and UCLA used scanning tunneling microscopy and spectroscopy to study the surface chemical structure of titanium carbide MXene. They found features on the surface, including titanium oxide clusters and functional groups, which could explain MXene's extreme properties and potential applications.
A research team at KAIST has developed an AI-based methodology to predict the major elemental composition and charge-discharge state of NCM cathode materials with high accuracy using convolutional neural networks. The technology can analyze surface morphology images of batteries to determine their composition and lifespan.
Sky & Telescope Pocket Sky Atlas, 2nd Edition
Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.
The Freeform Multi-material Assembly Process allows for the creation of complex devices with multiple materials, including plastics, metals, and semiconductors. This novel 3D printing and laser process enables the manufacture of multi-layered sensors, circuit boards, and even textiles with electronic components.
Engineers have modelled a new way to recycle polystyrene that could make the material reusable. The technique uses pyrolysis to break down polystyrene into parts that can be reformed into new pieces of the material, reducing energy consumption and increasing yield.
Researchers from Pohang University of Science & Technology have fabricated a small-scale energy storage device that can stretch, twist, fold, and wrinkle. The device features fine patterning of liquid metal electrodes using laser ablation, allowing it to maintain its energy storage performance under repeated mechanical deformations.
Scientists create high-throughput automation to calculate surface properties of crystalline materials using established laws of physics. This accelerates the search for relevant materials for applications in energy conversion, production, and storage.
Researchers at MIT have developed a method to analyze the behavior of granular materials, revealing their internal forces and shapes in 3D detail. This breakthrough may lead to better understanding of landslides and industrial processes.
Meta Quest 3 512GB
Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.