Researchers at Worcester Polytechnic Institute have developed a new technology for plastic recycling that uses aqueous chemi-mechanical recycling to blend, decolorize, and purify mixed polyolefins. This approach reduces energy consumption and eliminates toxic chemicals compared to existing methods.
Creality K1 Max 3D Printer
Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.
Researchers develop a coating strategy using lignin nanoparticles to stabilize an oil-in-water emulsion, forming a multifunctional coating that enhances paper performance while maintaining environmental compatibility. The coated paper exhibits improved barrier properties, mechanical strength, and biodegradability.
Researchers have found that nanoplastics interact with environmental microbes, strengthening bacteria and antimicrobial-resistant pathogens. This can lead to challenges for water treatment and distribution systems. More research is needed to understand the molecular mechanisms underlying these interactions.
Researchers at the University of Rochester have developed a new way to harness the properties of tungsten carbide as a catalyst for producing valuable chemicals and fuels. The method, which involves carefully manipulating tungsten carbide particles at the nanoscale level, has shown promising results in reducing costs and increasing eff...
A cellulose-based composite sheet can simultaneously adsorb and shield radioactive elements like cesium, iodine, and strontium. The resulting composite demonstrates its potential for controlling environmental contamination.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
Researchers created an ultrathin hydrogel electrode that can track vital signals without interruption, overcoming previous dehydration, freezing, and mechanical fragility issues. The new material forms a flexible layer that can withstand extreme temperatures and retain water content over time.
A novel optical microneedle device developed by researchers can quantify glucose levels in ultra-trace samples with high precision, offering a potential solution for blood-sampling-free clinical testing. The device features a functional hydrogel at its tip that reversibly binds to glucose, enabling accurate analysis without consuming t...
A team of researchers at Chalmers University of Technology has developed a new way to produce hydrogen gas without the use of platinum, a scarce and expensive metal. The process uses sunlight and tiny particles of electrically conductive plastic to efficiently produce hydrogen.
Researchers at RIKEN have developed a new plant-based plastic made from cellulose that rapidly degrades in natural environments, eliminating microplastic waste. The biodegradable plastic can be adjusted in strength and flexibility with added choline chloride, providing a practical solution to ocean pollution.
Researchers at KTH Royal Institute of Technology have identified three bisphenols with negligible estrogenic effects, suitable for replacing BPA in consumer products. The safe and sustainable alternatives are made from renewable resources and demonstrate thermal stability and mechanical properties comparable to BPA-based plastics.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
A new type of 3D-printable material made from polyethylene glycol has been developed by a University of Virginia research team. This breakthrough material is biologically friendly and can be stretched, making it suitable for use in larger structures or those requiring flexibility.
University of Rochester researchers developed algorithms to analyze complex chemistry in propane-to-propylene conversion. The study reveals the importance of defective metal sites and oxide phase stability in catalysts.
Scientists from Delft University of Technology have developed living materials that can detect disease biomarkers, catalyze environmental pollutant breakdown, and function as self-healing composites. The materials are made by embedding bacterial spores in a protective barrier and can be programmed to perform specific tasks.
DJI Air 3 (RC-N2)
DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.
Liheng Cai has challenged long-accepted rules of polymer physics, offering new theories to explain the behavior of associative polymers and solving a conundrum that stumped scientists for nearly 200 years. His work has led to breakthroughs in designing better materials for healthcare and sustainability.
Researchers test plastination on Western red cedar to create a strong and durable composite material, reducing water absorption by nearly 60% and increasing surface hydrophobicity. The technique offers a powerful alternative to traditional wood preservatives without compromising environmental performance.
Researchers at the University of Florida have developed a technique to create highly porous materials from everyday plastics by 'sculpting' from within. The new materials have potential applications in batteries, water filtration and high-density electronic storage.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
Researchers aim to understand how mixtures of charged polymers form microscopic droplets with unique properties, enabling drug delivery and adhesive applications. The team uses high-resolution measurement techniques to study complex coacervates.
A South Korean research team has discovered a molecular-level mechanism to switch the charge polarity of organic polymer semiconductors by adjusting the concentration of a single dopant. This enables polymers to exhibit both p-type and n-type characteristics, eliminating the need for separate materials or complex device architectures.
Lehigh University researchers are collaborating with Dow on a three-year NSF-funded project to understand the chemistry behind full degradation of these polymers. The goal is to develop strategies for selective mixing of microbial communities to target different parts of the polymer for complete breakdown.
GQ GMC-500Plus Geiger Counter
GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.
Researchers develop novel dual-laser method to create adaptive, shape-locking devices. The material integrates a shape-memory polymer skeleton with magnetic microcapsules, allowing for 'writing' and 'bending' of instructions and shapes in situ.
Researchers at the University of Cambridge have developed a hybrid device that combines light-harvesting organic polymers with bacterial enzymes to convert sunlight, water and carbon dioxide into formate, a fuel that can drive further chemical transformations. The new 'semi-artificial leaf' mimics photosynthesis and avoids toxic semico...
Scientists have developed an end-to-end microbial process converting renewable plant oils into sustainable polyesters comparable to petroleum-based plastics. The two-step process achieved record-setting yields and productivity, paving the way for a scalable and environmentally viable alternative to fossil fuels.
A new AI-based system helps researchers design polymers with tailored electronic properties for next-generation bioelectronics. By processing a wide range of experiments, the system reveals the importance of local polymer order and dopant-polymer separation in controlling electronic properties.
Three young scientists received top honors at the 2025 Blavatnik National Awards for Young Scientists, each receiving a $250,000 prize for their innovative work on critical global issues. The awards recognize exceptional scientific achievement and innovation by U.S.-based researchers under 42 years old.
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
Scientists at The University of Osaka developed a polymeric adhesive that can be reused repeatedly by introducing reversible bonds into the interface. This technology could improve manufacturing yield, reduce costs and minimize waste.
Researchers at IIT and UniBz developed a biodegradable hydrogel that retains water and supports plant growth in drought conditions, enabling minimal water usage. The material also exhibits potential for real-time monitoring of plant health and soil conditions.
Researchers have found that plastic nanoparticles can enter crops during growth, accumulating in edible parts and potentially affecting human health. The study used radishes to demonstrate the uptake of nanoplastics by plants, with nearly 5% of particles retained by the root system.
Davis Instruments Vantage Pro2 Weather Station
Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.
Researchers at the University of Copenhagen have developed a method to convert plastic waste into a climate solution for efficient and sustainable CO2 capture. The new material, BAETA, can absorb CO2 out of the atmosphere efficiently compared to existing carbon capture technologies.
Professor Paul Motzki is developing ultra-flat, compact, and lightweight cooling units using shape memory alloys and dielectric elastomer actuators. He aims to create climate-friendly and energy-efficient alternative to conventional systems.
Researchers at Pusan National University have developed a novel, multi-resin dispensing process for fiber-reinforced polymer fabrication, enabling precise patterning of mechanical properties within a monolithic structure. The breakthrough composite material combines flexibility and strength for advanced robotic applications.
Researchers have developed a smart hydrogel surface that can instantly recognize whether it's in contact with oil or water and switch its behavior to separate the two. The surface achieves a record-breaking separation speed of 17,750 liters per square meter per hour, three to five times faster than most current membranes.
Nikon Monarch 5 8x42 Binoculars
Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.
Researchers develop biodegradable polyurethane using natural polymer lignin and captured carbon dioxide, reducing energy consumption and toxic chemicals. The material is strong, heat-resistant, and easily processed, making it a promising alternative to petroleum-based plastics.
HIT researchers created multi-material, multi-responsive, multi-shape shape memory polymer (SMP) gradient metamaterials with tunable properties. These smart materials can adapt to different tasks without extra tools or infrastructure, enabling applications such as secure information storage and soft robotic systems.
A new study uses molecular imaging to uncover structural defects in conjugated polymers formed through aldol condensation, a versatile and environmentally friendly synthesis method. By understanding these defects, researchers can develop more sustainable materials for electronics, computing, and other applications.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
Researchers at Washington University in St. Louis have developed a new type of bioplastic, called LEAFF, which is strong, biodegradable, and printable. This innovation uses cellulose nanofibers to address the limitations of current bioplastics and has potential applications for sustainable packaging.
Researchers developed a new method for building powerful, compact energy storage devices using thin-film supercapacitors without metal parts. The device can output 200 volts, equivalent to powering 100 LEDs for 30 seconds or a 3-watt bulb for 7 seconds.
A team at Binghamton University has developed a process to convert food waste into biodegradable plastic, reducing greenhouse gas emissions and offering a sustainable alternative. The process utilizes bacteria to synthesize polyhydroxyalkanoate (PHA) plastic, which can be harvested and shaped into various products.
The collaboration aims to increase print quality and consistency for large-format 3D printing, enabling applications in hydroelectric dams, oil and gas industries, and more. ORNL's slicing software and JuggerBot 3D equipment will be refined to process thermosets independently and simultaneously.
Researchers found that sewage spills from land to sea coincided with winds of at least 6.5m/s on 178 days within a two-year period, potentially sending microplastics into the air. The study suggests that coastal towns and cities may be exposed to billions of airborne microplastic particles.
Apple Watch Series 11 (GPS, 46mm)
Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.
A new study by Colorado State University outlines a path to creating advanced, recyclable plastics using natural poly(3-hydroxybutyrate) (P3HB). The breakthrough method involves stereodivergent catalysis, which enables the production of enantiopure PHAs with improved properties for various applications.
International Journal of Extreme Manufacturing (IJEM) achieves a new Impact Factor of 21.3, surpassing 20 for the first time and maintaining its position as top journal in the field. IJEM has attracted submissions from 853 institutions in 81 countries.
Materials researchers at Harvard have created a way to produce natural rubber that retains its stretchiness and durability while improving its ability to resist cracking. The new material is four times better at resisting slow crack growth during repeated stretching and 10 times tougher overall.
Rigol DP832 Triple-Output Bench Power Supply
Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.
Researchers at Texas A&M University have developed a dynamic material that can self-heal after puncturing, changing from solid to liquid and back, allowing it to absorb kinetic energy and leave tiny holes. The polymer's unique properties make it suitable for protecting space vehicles and military equipment.
Researchers at the University of Houston create ceramic materials with origami-inspired shapes and a soft polymer coating, allowing them to bend under pressure without breaking. The resulting structures have improved toughness and can be used in medical prosthetics, aerospace, and robotics.
Jiawei Yang creates bioadhesives with two layers, a transparent solid hydrogel layer and a clear liquid adhesive layer, to provide fast, strong, stable, and deep adhesion in the body. The new bioadhesives have potential applications in treating Parkinson's disease, heart failure, and healing damaged cartilage.
GoPro HERO13 Black
GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.
Researchers at the University of Texas at Dallas have developed a durable and recyclable foam that can be 3D-printed using dynamic covalent chemistry. The new material has reversible bonds, allowing it to repair itself when damaged, making it more versatile and longer-lasting.
Researchers at MIT have developed a method to mass manufacture nanoparticles that target cancer cells, eliminating the need for manual polymer mixing and streamlining production. This approach integrates good manufacturing practice (GMP)-compliant processes, making it suitable for large-scale production of cancer treatments.
Researchers successfully synthesized polyaniline with a golden luster, exhibiting unique properties and potential for micro-organic semiconductor devices. The material's metallic luster is attributed to polarons and surface luster, setting it apart from conventional conductive polymers.
Researchers at Waseda University developed a novel self-assembly process to create multilayered films with superior thermal, mechanical, and gas barrier properties. The film exhibits enhanced hardness and self-healing ability compared to conventional materials.
Sony Alpha a7 IV (Body Only)
Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.
UT Dallas researchers have invented a mandrel-free method for fabricating springlike polymer muscles with high-spring-index yarns. These muscles can significantly contract and elongate due to their large spring index, enabling applications in comfort-adjusting jackets and mechanical energy harvesting.
A team of engineers has created a new hydrogel that rapidly switches between soft and hard states, making it ideal for real-time applications such as impact-resistant wearables or soft robots. The 'instant armor' hydrogel achieves this with a high-entropy design that allows rapid recovery in just 28 seconds.
Scientists developed a novel solvatochromic fluorescent dye that enables high-precision temperature measurements through changes in fluorescence properties. The researchers achieved exceptional sensitivity and resolution, ideal for bioimaging applications.
Kestrel 3000 Pocket Weather Meter
Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.
Researchers at ETH Zurich have developed a fully additive-manufactured plastic scintillator detector for elementary particles, showcasing a significant step towards time- and cost-effective ways to build large-scale particle detectors. The detector's three-dimensional particle tracks enable more accurate neutrino tracking and analysis.
Core-shell nanoparticles offer effective drug encapsulation, shielding from degradation, and controlled release. This innovation enables targeted drug delivery, improving treatment outcomes and reducing side effects. The versatility of these nanoparticles allows for tailored materials to suit different therapeutic needs.
Johns Hopkins engineers developed a pioneering prosthetic hand that can grip and grasp everyday objects like a human, using a hybrid design that combines rigid and soft robotics. The system achieves 99.69% accuracy in handling objects of varying textures and materials.
Fluke 87V Industrial Digital Multimeter
Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.
Researchers at Institute for Chemical Reaction Design and Discovery developed a rapid self-strengthening technology using weak azo bonds in double network hydrogels. This enables the material to rapidly form new polymer networks, increasing its strength upon deformation.
Research by University of Missouri researchers uncovers microplastic pollution generated by polymer-coated fertilizers, threatening human and animal health. The study suggests biodegradable alternatives and effective stormwater management to mitigate the risks associated with PC-CRFs.
Researchers at the University of Houston have developed a new membrane that allows water to flow eight times faster while maintaining high salt rejection rates. This breakthrough could lead to more efficient and cost-effective desalination systems, lowering costs and increasing access to clean water.
Apple MacBook Pro 14-inch (M4 Pro)
Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.
Researchers at the University of Sydney are using Zwitterions to create materials that can prevent blood clots from forming in medical devices and implants. They have successfully created a zwitterionic coating that repels water beyond the material's boundaries.
Engineers at the University of Pennsylvania and Aarhus University found that introducing just the right amount of disorder can increase the toughness of certain materials by 2.6 times. This discovery opens up new possibilities for widespread use of so-called mechanical metamaterials.