The Dielectric Elastomer Sensor (DES) offers real-time pressure and vibration monitoring in soft fluidic actuators, ideal for robotics and biomedical devices. The sensor's flexibility and ability to withstand large deformations make it suitable for applications in automobile designing and structural health monitoring.
Researchers at Institute for Chemical Reaction Design and Discovery developed a rapid self-strengthening technology using weak azo bonds in double network hydrogels. This enables the material to rapidly form new polymer networks, increasing its strength upon deformation.
Researchers at Rice University create programmable fluidic fuses that protect devices and enable complex sequencing of actions. The study's findings have far-reaching applications in wearable technology and robotics, promising more resilient and capable systems.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
Researchers at Worcester Polytechnic Institute are developing a lightweight, flexible robotic arm that enables wheelchair users to safely grasp and carry objects out of reach. The project builds on origami-inspired designs and novel fabrication methods for modules made of lightweight plastics, 3D printed components, and sensors.
A new study at the University of Gothenburg found that a software robot can detect side effects faster than physicians during amiodarone treatment for cardiac arrhythmia. The robot also recommends appropriate intervals between lab tests, aligning with standard practices and reducing unnecessary testing.
Researchers at Japan Advanced Institute of Science and Technology developed Leafbot, a soft robot that uses vibration-driven locomotion to traverse uneven surfaces. The robot's compliant structure and simple motion strategy enable it to overcome complex obstacles, making it valuable for applications such as inspection and exploration.
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.
Lydia Kavraki was elected to the National Academy of Engineering for her groundbreaking contributions to robotics, biomedicine, and artificial intelligence. Her work has revolutionized motion-planning algorithms and enabled robots to collaborate with humans safely.
A new type of soft robot can crawl like a worm, climb cables, and suddenly snap into a different shape to move in a new direction. The Snap Inflatable Modular Metastructure (SIMM) system allows the robot to both smoothly deform and rapidly change configuration using just one air source.
Researchers at UC3M developed a new soft joint model that enables versatility of movement, adaptability, and safety in robots. The asymmetrical triangular structure allows for greater bending angles with less force, providing operational protection and increased safety in human-robot interactions.
Researchers created a 'Hyperelastic Torque Reversal Mechanism' that enables fast and powerful movements in soft robots made from rubber-like materials. The mechanism leverages the characteristics of soft hyperelastic materials to rapidly stiffen as they compress, allowing for rapid and efficient movement.
Apple Watch Series 11 (GPS, 46mm)
Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.
Researchers at Istituto Italiano di Tecnologia and Imperial College London demonstrate the connection between hand movement patterns and motoneuron control patterns, enabling natural control of bionic limbs. The study reports successful testing of a soft prosthetic hand with individuals with physical impairments.
Researchers at Cornell University have developed modular worm and jellyfish robots that harness 'embodied energy' to reduce weight and increase power density. These soft robots demonstrate improved battery capacity and can travel longer distances than previous models.
Researchers develop a human-robot musical band featuring humanoid robots that perform alongside human musicians, achieving natural synchronization through advanced robotic systems. The project showcases the potential of humanoid robots in creative fields like music, highlighting real-time interaction, adaptability, and artistry.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
Antonio Bicchi's IIT-led project VSoftPro aims to create a transhumeral prosthesis with user-controlled stiffness and passive adaptability. The goal is to replicate the natural appearance and functionality of a human arm, enhancing safe and natural interactions.
Researchers are developing a software framework for crowd-sourced 3D map generation and visual localization from camera data to improve real-time updates and low-cost visual localization. This technology aims to advance self-driving vehicles and enable fully automated transportation
Researchers at MIT have developed a new design for robotic insects that can perform precise pollination with increased speed and maneuverability. The revamped robot has a longer flight duration and can complete acrobatic maneuvers, enabling it to aid in mechanical pollination and boost fruit yields.
Researchers at PolyU have invented a ground-breaking self-powered mechanism to eject freezing droplets, enabling cost-efficient and promising technological applications. The discovery uses spring-like elastic pillars to accelerate ejection velocity and enlarge kinetic energy transformation of freezing droplets.
A new soft wearable robot called WeaRo has been developed to help workers avoid job-related injuries while lifting, lowering, and carrying objects. The robot effectively reduces muscle activation levels by up to 27.0% without constraining users' movements.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
The research team developed a gripper (MOGrip) that can transfer multiple objects simultaneously, reducing process time by 34% and travel distance by 71%. Inspired by human multi-object grasping strategy, MOGrip features in-hand translation capability and decoupling links for simplified control.
A research team at Pohang University of Science & Technology developed a technology that visualizes the deformation of 'serpentine' structures in real-time through color changes. This innovation eliminates the need for complex nanofabrication processes, providing actionable design guidelines for optimizing these structures.
Researchers at Stanford University have designed a comfortable, flexible knit sleeve that simulates realistic touch using pressure-based haptics. The Haptiknit sleeve provides more accurate tactile feedback than vibration-based devices, allowing for smoother navigation, military communication, and rehabilitation.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
A study published in Science Robotics found that diverse and inclusive teams in robotics research achieve higher motivation, commitment, and productivity. The team identified seven main benefits of workforce diversity and inclusive leadership, including increased innovation and reduced bias.
Researchers at Case Western Reserve University have developed high-performance, low-cost zinc-sulfur batteries with enhanced energy capacity, improved conductivity and stability. These advancements address long-standing safety concerns and enable smaller, longer-lasting designs.
Researchers have created a versatile shape-changing polymer that can twist, tilt, shrink, and expand, mimicking animal movements. The polymer's unique properties make it useful for creating soft robots or artificial muscles, with potential applications in medicine and other fields.
Nikon Monarch 5 8x42 Binoculars
Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.
The researchers created a 'metasheet' with an elastic polymer and embedded magnetic microparticles that can move like a wave when controlled by a magnetic field. This technology has potential for use in confined spaces, allowing objects to be lifted and moved without physical contact.
The NUS research team has developed flexible fibres with self-healing, light-emitting and magnetic properties. The Scalable Hydrogel-clad Ionotronic Nickel-core Electroluminescent (SHINE) fibre offers a more efficient, durable and versatile alternative to existing light-emitting fibres.
Researchers developed a soft robot with fins shaped like manta rays, capable of swimming up and down throughout the water column. The robot uses spontaneous snapping-induced jet flows to achieve high speeds and maneuverability.
Researchers at Oregon State University have developed a new 3D printing technique that allows for the creation of shape-changing materials with muscle-like properties. These materials can crawl, fold, and snap directly after printing, enabling their use in implantable medical devices, soft robotics, and energy storage applications.
Sony Alpha a7 IV (Body Only)
Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.
Researchers at UVA have developed a new polymer design that decouples stiffness and stretchability, allowing materials to be both strong and flexible. The 'foldable bottlebrush polymer networks' can store extra length within their structure, enabling them to elongate up to 40 times more than standard polymers without weakening.
Researchers at the University of Illinois have created a DNA-made nanorobot called NanoGripper that can pick up COVID-19 viruses for rapid detection and block viral particles from entering cells. The device also has potential applications in cancer treatment and preventive medicine.
Researchers at Washington State University have discovered a way to accelerate ions in mixed organic ion-electronic conductors, setting a new world record for ion speed. This breakthrough could lead to improved battery charging, biosensing, and neuromorphic computing.
Apple AirPods Pro (2nd Generation, USB-C)
Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.
Researchers have developed sensitive ceramic sensors that can selectively respond to pressure or temperature, which are integrated into a prosthetic hand and a robotic skin. The goal is to enable safe collaboration between humans and machines, with applications in medicine and industry.
Scientists at Max Planck Institute for Intelligent Systems developed a novel method for deploying multiple magnetic miniature robots to navigate through complex networks resembling blood vessels. The system allows for simultaneous treatment of multiple locations, saving critical time and enabling localized care.
Researchers at Tampere University have developed a non-electric touchpad that can sense force, area, and location of contact without electricity. The device is made of soft silicone and contains 32 channels, enabling precise detection of handwritten letters and multiple simultaneous touches.
Davis Instruments Vantage Pro2 Weather Station
Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.
Researchers developed grain-sized soft robots that can transport up to four different drugs, release them in reprogrammable orders and doses, and navigate complex environments inside the human body. The robots' precision functions have the potential to significantly improve therapeutic outcomes while minimizing side effects.
Researchers developed a soft robotic finger that can perform routine doctor office examinations, including taking patient pulses and checking for abnormal lumps. The device's advanced sense of touch allows it to detect stiffness similar to human fingers, enabling early disease detection and more efficient medical exams.
Researchers developed a light-driven, toroidal micro-robot that can navigate complex environments like medicine and environmental monitoring. The innovation uses liquid crystalline elastomer to overcome viscous forces and enables autonomous movement in low Reynolds number regimes.
Aranet4 Home CO2 Monitor
Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.
Researchers from King's College London have created a new kind of compact circuit that enables robots to receive complex instructions without electricity. This breakthrough could enable the creation of robots with more complex AI-powered software and improve their social awareness and dexterity.
Researchers developed ROSE, a soft robotic gripper that gently grasps objects using a unique 'wrinkling' phenomenon. The study demonstrates ROSE's effectiveness in picking up various crops, including strawberries and mushrooms, with high success rates.
Scientists at the Max Planck Institute developed hexagon-shaped robotic components that can be snapped together into high-speed robots with rearrangeable capabilities. The modules feature artificial muscles and magnets for quick connections, enabling rapid changes in geometry and motion.
A new robotic leg powered by artificial muscles can walk, jump, and detect obstacles without complex sensors. Its ability to lift its own weight explosively enables high jumps and fast movements.
The Human AugmentatioN via Dexterity (HAND) center aims to develop robots capable of enhancing human labor through engineered systems of dexterous robotic hands, AI-powered fine motor skills, and human interface. The center's goal is to make robotic assistance accessible and applicable to a wide range of physical actions.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
Researchers at Cornell University have developed fungus-controlled robots that can react to their environment better than synthetic counterparts. The biohybrid robots use fungal mycelia to sense chemical and biological signals, enabling them to adapt to unexpected situations.
Researchers will create versatile and easy-to-integrate robots capable of intelligent grasping, fine motor skills, and hand-eye coordination. The goal is to empower diverse workforces with robotic solutions, improving worker productivity and job opportunities.
Researchers at Singapore University of Technology and Design designed a vacuum-actuated hybrid soft gripper to handle delicate objects of varying sizes and shapes. The gripper features soft composite fingers and a palm, enabling wide grasping potential and adaptability to specific tasks.
Apple iPad Pro 11-inch (M4)
Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.
Researchers develop film-balloon (FiBa) soft robots with novel fabrication approach, enabling lightweight, untethered operation and advanced biomimetic locomotion capabilities. The breakthrough enhances the operational capabilities of soft robots for diverse applications.
Researchers at PolyU have developed a new type of thermally-insulated and breathable soft robotic clothing that can automatically adapt to changing ambient temperatures. This innovative clothing uses soft actuators to trap a layer of air and increase thermal resistance, reducing heat stress and discomfort in high-temperature environments.
Researchers have created a novel system called ConTac, which can estimate the shape and contact of a robotic arm with soft skin using a single sensing module. The system consists of a backbone, soft skin with markers, a camera to observe skin deformation, and models for shape and contact sensing.
Sky & Telescope Pocket Sky Atlas, 2nd Edition
Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.
Engineers have shown that air flow through open-cell foam can be used to perform digital computation, analog sensing, and combined digital-analog control in soft textile-based wearable systems. The researchers designed foam-based fluidic resistors to create two-dimensional pneumatic logic circuits embedded in textile-based devices.
Researchers from Chiba University developed a foldable pouch actuator that enables finger extension in soft rehabilitation gloves, overcoming the limitation of existing actuators. The FPA facilitates joint-specific movements and has potential applications in telerehabilitation and care facilities.
Scientists embedded gold nanorods in hydrogels that can contract when exposed to light and expand again upon removal. This expansion and contraction mechanism allows for remotely controlled actuators with endless design possibilities.
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
Researchers created RoboFabric, a wearable fabric that can stiffen on demand for medical applications and soft robotics. The technology reduces muscle activity by up to 40% when assisting joints while lifting loads.
Scientists have created a new type of battery that is soft and stretchable, making it suitable for wearables and medical implants. The 'jelly batteries' use hydrogels to deliver an electric current and can be stretched up to ten times their original length without losing conductivity.
Researchers at Ben-Gurion University's PAI Lab developed groundbreaking multifunctional material-sensors that emulate natural systems, advancing Physical AI. The sensors can process diverse signals concurrently through ions and electrons, enabling versatile and lifelike interactions in fields like robotics and healthcare.
DJI Air 3 (RC-N2)
DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.
Scientists at King Abdullah University of Science and Technology developed a tiny 'claw machine' that can pick up and drop a marble-sized ball in response to exposure to chemical vapors. The material's properties can be precisely controlled, making it easy to customize.
Researchers at Northwestern University developed a new soft actuator that enables robots to move by expanding and contracting like human muscles. The device was used to create a cylindrical, worm-like robot and an artificial bicep, demonstrating its potential for safer and more practical applications.
Researchers at North Carolina State University have developed a lightweight fluidic engine that can power muscle-mimicking soft robots for use in assistive devices. The new engine generates significant force and is untethered to an external power source, making it particularly attractive for improving people's ability to move their upp...
Creality K1 Max 3D Printer
Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.
Researchers at NC State University have developed a technique to create miniature soft hydraulic actuators that can move small soft robots, allowing for exceptional control and delicacy. The actuators use shape memory polymers and microfluidic channels to control the motion and shape change of the soft robots.
The researchers created soft robots equipped with electronic skins and artificial muscles to sense their surroundings and adapt in real-time. These robots can perform various tasks, such as monitoring internal conditions, providing treatments, and delivering drugs over an extended period.
Researchers have developed a mathematical theory of knitted materials, enabling the creation of programmable textiles with adjustable elasticity. The study, led by Georgia Tech physicists, explores the relationships between yarn manipulation, stitch patterns, and fabric behavior to expand knitting's applications beyond clothing.