Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Transforming highways for high-speed travel and energy transport

Researchers have developed a proof of concept for a superconducting highway that can transport vehicles and electricity, leveraging liquid hydrogen cooling to address the challenge of low-temperature superconductor operation. The system enables speeds of at least 400 miles per hour and integrates multiple uses, making it more affordable.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Better superconductors with palladium

Researchers have found a material, palladium, that is optimally suited for creating superconductors with high transition temperatures. This discovery has the potential to revolutionize electricity generation and transportation by enabling materials to conduct electricity without loss at normal room temperature and atmospheric pressure.

X-rays reveal electronic details of nickel-based superconductors

Scientists at Brookhaven National Laboratory used x-rays to study the electrons in nickel-based superconducting materials, revealing substantial similarities with cuprate superconductors. The research could help scientists zero in on key features essential for these materials' remarkable ability to carry electrical current.

Davis Instruments Vantage Pro2 Weather Station

Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.

Scientists thread rows of metal atoms into nanofiber bundles

Researchers from Tokyo Metropolitan University have successfully threaded indium atoms into bundles of transition metal chalcogenide nanofibers, creating a unique nanostructure. The resulting metallic nanowires exhibit properties suitable for flexible wiring in nanocircuitry.

Destroying the superconductivity in a kagome metal

Scientists at RMIT University and partner organisation confirm electric control of superconductivity and giant anomalous Hall effect in the kagome metal CsV₃Sb₅. Proton intercalation modulates carrier density, allowing for tuning of Fermi surfaces and potentially realizing exotic quantum phase transitions.

Creality K1 Max 3D Printer

Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.

Quantum geometry found to be newest twist in superconductivity

Researchers at University of Texas at Dallas and Ohio State University identify quantum geometry as primary mechanism for superconductivity in twisted bilayer graphene. This finding paves way for designing new superconductors that can operate at higher temperatures, transforming industries such as energy transport and maglev trains.

Scientists boost quantum signals while reducing noise

Researchers have developed a new device that can effectively redistribute noise and reduce its impact on quantum measurements. By 'squeezing' the noise, they can make more accurate measurements, enabling faster and more precise quantum systems. The device has the potential to improve multi-qubit systems and metrological applications.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

Researchers take a step toward novel quantum simulators

Scientists at Stanford University and SLAC National Accelerator Laboratory have made progress toward building a novel quantum simulator. The device can simulate interactions between two quantum objects, paving the way to study complex systems and answer fundamental questions in physics.

Magnetic matchmaking under the microscope

A team of researchers observed magnetically mediated hole pairing in a synthetic crystal, confirming theories that magnetic fluctuations give rise to pairing. The experiments suggest significant mobility of bound hole pairs, which could be efficient carriers of currents.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

Making the unimaginable possible in materials discovery

Researchers at Argonne National Laboratory develop a new method to create crystalline materials with two or more elements, yielding previously unknown compounds with exotic properties. The discovery has potential applications in superconductors, energy transmission, high-speed transportation, and energy-efficient microelectronics.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

ERC Starting Grant for Uri Vool

Researchers at Max Planck Institute will fabricate hybrid superconducting circuits to explore novel superconductors and study the gap structure of atomically thin materials. The project aims to unravel the structure of the superconducting phase, crucial for understanding interacting many-body quantum systems.

ERC Starting Grant for Uri Vool

Uri Vool receives ERC Starting Grant to fabricate hybrid superconducting circuits for novel material exploration and studying the gap structure of atomically thin materials. This project aims to unravel the superconducting phase in these materials, crucial for understanding interacting many-body quantum systems.

High-temperature superconductivity in lanthanum, yttrium, and cerium ternary hydrides

A team of researchers from Japan Advanced Institute of Science and Technology has discovered thermodynamically stable phases in Y–Ce–H and La–Ce–H systems that exhibit high-temperature superconductivity. Calculations predicted Tc values of up to 173 K, paving the way for the development of more energy-efficient and sustainable societies.

Apple iPad Pro 11-inch (M4)

Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.

New hybrid structures could pave the way to more stable quantum computers

Researchers at Penn State have created a two-dimensional heterostructure by combining a topological insulator with a monolayer superconductor, demonstrating topological superconductivity and Ising-type superconductivity. The hybrid structure could pave the way for more stable quantum computers and explore Majorana fermions.

The “dense” potential of nanostructured superconductors

Researchers have successfully prepared highly dense superconducting bulk magnesium diboride with a high current density using an unconventional spark plasma sintering method. The material exhibits excellent superconducting properties, including a high critical current density of up to 6.75 x 10^5 ampere/cm^2 at -253°C.

Aranet4 Home CO2 Monitor

Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.

High-quality growth

Assistant Professor SUZUKI Hiroo and colleagues have developed a method to grow highly crystalline TMDCs, such as MoS2 and WS2, using chemical vapor deposition in a stacked substrate configuration. The technique produces samples with large domains and optimal photoluminescence characteristics.

The magneto-optic modulator

UC Santa Barbara researchers develop a device to convert data from electrical current to pulses of light, allowing for faster transmission between cryogenic and room-temperature systems. The magneto-optic modulator enables the integration of superconducting microprocessors and quantum computers, promising revolutionized computation.

Keeping bulk magnesium diboride superconducting at higher current densities

Researchers at Shibaura Institute of Technology developed an optimized recipe to retain superconductivity in bulk MgB2 by enhancing its critical current density. By combining sintering conditions with controlled addition of nanometer-sized amorphous boron and dysprosium oxide, the team achieved a superior critical current density.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

New hafnium polyhydrides are discovered superconductivity above 80K

Researchers at Institute of Physics, Chinese Academy of Sciences have discovered new hafnium polyhydrides exhibiting superconductivity above 80K, a temperature threshold previously unattained by any 5d transition metal hydride. The study reveals these compounds display high critical fields and Ginzburg-Landau superconducting coherent l...

Fluke 87V Industrial Digital Multimeter

Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.

Study finds nickelate superconductors are intrinsically magnetic

Researchers at SLAC National Accelerator Laboratory have discovered that nickelate superconductors are always magnetized, whether in their normal or superconducting state. This finding highlights the fundamental properties of these materials and provides insight into how unconventional superconductors carry electric current with no loss.

A new leap in understanding nickel oxide superconductors

Researchers have discovered nickel oxide superconductors with the presence of charge density waves (CDWs), which accompany superconductivity. This discovery reveals that nickelates are capable of forming correlated states, hosting a variety of quantum phases, including superconductivity.

Thin mica shows semiconducting behavior, say scientists in new study

Researchers observe a significant increase in electrical conductivity when mica is thinned down to few molecular layers, exhibiting semiconductor-like behavior. The findings suggest that thin mica flakes have the potential to be used in two-dimensional electronic devices with exceptional stability and durability.

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.

Keeping the energy in the room

Professor Ben Mazin and his team developed precision optical sensors for telescopes, doubling the spectral resolving power. This breakthrough enables scientists to analyze exoplanet composition using spectroscopy, with implications for detecting different molecules across the universe.

Flexing the power of a conductive polymer

Researchers at UCSB develop soft, semiconducting carbon-based polymer for reconfigurable logic circuits. The conjugated polyelectrolyte enables flexible and power-efficient electronics, promising a new era in computing systems.

Apple AirPods Pro (2nd Generation, USB-C)

Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.

A new step in the search for room-temperature superconductors

Researchers at Yale University have found a new connection between superconductivity and charge density waves, which could lead to the development of room-temperature superconductors. By manipulating charge density waves, scientists may be able to control and alter superconductivity.

Finding superconductivity in nickelates

A team of researchers led by Arizona State University's Antia Botana discovered a new high-temperature superconductor in nickelates, a material that could pave the way to room temperature superconductivity. The discovery was made possible by combining theoretical models with experimental results using supercomputers.

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.

Spinning is key for line-dancing electrons in iron selenide

A team of researchers used resonant inelastic X-ray scattering to study the behavior of electron spins in iron selenide, a material that exhibits directionally-dependent electronic behavior. They found that high-energy spin excitations are dispersive and undamped, indicating a well-defined energy-versus-momentum relationship.

Spin keeps electrons in line in iron-based superconductor

Electronic nematicity, a key feature of iron-based superconductors, is primarily driven by spin excitations in FeSe. The study uses RIXS to reveal the spin anisotropies underlying this phenomenon, shedding light on its origin and potential impact on high-temperature superconductivity.

Sky & Telescope Pocket Sky Atlas, 2nd Edition

Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.

New zirconium polyhydrides become superconducting with high Tc

Researchers at Institute of Physics Chinese Academy have discovered new zirconium polyhydrides that exhibit superconductivity with a high transition temperature (Tc) of ~71 K. The compounds can be synthesized under high pressure conditions and may lead to the discovery of new superconducting materials.