Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

DNA origami guides new possibilities in the fight against pancreatic cancer

Researchers developed DNA origami structures that selectively deliver fluorescent imaging agents to pancreatic cancer cells, enabling more accurate cancer imaging and selective chemotherapy delivery. The study also explored the use of origami-folded DNA molecules loaded with chemotherapy drugs for targeted delivery to cancer cells.

DNA origami suggests route to reusable, multifunctional biosensors

Researchers at Caltech developed a DNA origami-based approach to create reusable, multifunctional biosensors for quickly detecting proteins in bodily fluids. The system uses a lilypad-like structure with short DNA strands to bind to molecules of interest, allowing for the detection of larger molecules such as large proteins.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

Velcro DNA helps build nanorobotic Meccano

Scientists at the University of Sydney create programmable nanostructures using DNA origami, enabling rapid prototyping of diverse configurations. These custom-designed nanostructures have potential applications in targeted drug delivery, responsive materials, and energy-efficient optical signal processing.

Nanotechnology: Flexible biosensors with modular design

LMU researchers have developed a general, modular strategy for designing sensors that can be easily adapted to various target molecules and concentration ranges. The sensor uses a DNA origami scaffold, which consists of two arms connected by a molecular hinge, allowing for significant acceleration in diagnostic tool development.

Nanotechnology: DNA origami with cargo function

Researchers have developed a DNA origami-based sensor that can detect lipid vesicles and deliver molecular cargo with precision. The system uses single-molecule Fluorescence Resonance Energy Transfer (smFRET) to measure the distance between fluorescent molecules.

DJI Air 3 (RC-N2)

DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.

Nanorobot with hidden weapon kills cancer cells

Researchers at Karolinska Institutet developed nanorobots that target and kill cancer cells using a 'kill switch' activated in low pH environments. The study achieved a 70% reduction in tumour growth in mice, paving the way for further investigation into its potential as a cancer treatment.

Diamond glitter: A play of colors with artificial DNA crystals

Scientists have developed a new approach for manufacturing semiconductors for visible light using DNA origami. The method uses a diamond lattice structure with periodicity of hundreds of nanometers, allowing for efficient solar cells and innovative optical waveguides.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

DNA origami folded into tiny motor

Researchers have developed a working nanoscale electromotor powered by hydrodynamic flow through a nanopore. This innovation uses DNA origami to create a turbine with precise control over rotational speed and direction. The tiny motor has potential applications in molecular factories, medical probes, and soft propulsion systems.

DNA construction led to unexpected discovery of important cell function

Researchers at Karolinska Institutet used DNA origami to activate the Notch receptor in a new way, revealing it can be activated 'on demand' with the help of a protein called Jag1. The study opens new avenues for understanding the Notch signalling pathway and its role in serious diseases like cancer and Alagille Syndrome.

Unveiling the mechanism of 3D folding of cell sheets

A Kyoto University team reveals the Dumpy protein as the key factor in controlling 3D tissue structures through external cues. This finding challenges traditional understanding of morphogenesis and opens up new avenues for manufacturing controllable 3D tissue folding with coordinated cell behaviors.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.

Reprogramming the shape of virus capsids could advance biomedicine

Scientists have developed a way to program virus particles' size and shape using DNA origami nanostructures, potentially advancing vaccine development and drug delivery. The approach uses electrostatic interactions between DNA nanostructures and capsid proteins to create user-defined assemblies.

Nature-study reveals new mechanism for DNA folding

Researchers from Karolinska Institutet and the Max Planck Institute have identified a new mechanism for DNA folding, revealing how the Smc5/6 complex regulates chromosomal organization. This discovery provides new insights into normal development and disease prevention.

Designing with DNA

A new software program developed by Duke Ph.D. student Dan Fu lets users create 3D structures made of DNA, including tiny vases, bowls, and hollow spheres. The software relies on a way to build with DNA described in 2011 by Hao Yan, which works by coiling a long DNA double helix into concentric rings to form the contours of the object.

RNA origami enables applications in synthetic biology

Researchers at Aarhus University use RNA origami sponges and CRISPR technology to regulate protein production levels and gene expression in bacteria and yeast. This approach generates stable, interactive molecules for synthetic biology-based regulation, enabling unique applications in industrial, diagnostic, and therapeutic fields.

Fluke 87V Industrial Digital Multimeter

Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.

A "nano-robot" built entirely from DNA to explore cell processes

Scientists have developed a DNA nano-robot that can apply forces with unprecedented accuracy, enabling closer study of mechanical forces at microscopic levels. The robot is designed to target specific mechanoreceptors, allowing researchers to activate them and study key signaling pathways involved in biological processes.

First electric nanomotor made from DNA material

Researchers created a synthetic rotary motor using DNA origami, allowing for targeted movement and mechanical work. The nanomotors can be controlled to rotate in one direction and achieve unprecedented mechanical capabilities.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

DNA nanotech safe for medical use, new study suggests

A new study from Ohio State University found that DNA nanotechnology is safe for medical use in mice, with a dose-dependent immune response. The research suggests that different shapes of nanostructures may be more conducive to different therapeutic applications.

Repurposing cancer drug to treat neuroinflammation

Researchers at Karolinska Institutet have successfully repurposed a cancer drug to target neuroinflammatory diseases like multiple sclerosis. A novel drug carrier was developed to deliver the treatment specifically to microglia, reducing inflammation and disease progression.

Study probes how DNA folding might affect gene activity

Researchers have clarified the mechanism behind activating genes in drosophila fly sex cells, which may hold clues to understanding diseases. The study's findings suggest that DNA packaging plays a crucial role in regulating gene expression, with abnormal packaging potentially leading to misregulation and disease.

GoPro HERO13 Black

GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.

Planting the seed for DNA nanoconstructs that grow to the micron scale

Researchers at Harvard's Wyss Institute develop programmable DNA self-assembly strategy for ultrasensitive diagnostic biomarker detection and scalable fabrication of micrometer-sized structures. The 'crisscross polymerization' approach enables robust nucleation control and growth to large sizes.

Researchers watch anti-cancer drug release from DNA nanostructures in real time

A team of researchers from Aalto University and other institutions have developed a method to monitor the digestion of DNA nanostructures by endonucleases in real time. This study provides insights into tunable drug delivery and new design paradigms for DNA-based drug-carriers, with potential applications in cancer treatment.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Scientists use DNA origami to monitor CRISPR gene targeting

Researchers used DNA origami to analyze ultra-fast movements of CRISPR enzymes, enabling them to understand how they recognize target sequences. This technique will help optimize CRISPR for fewer off-target matches and improve gene editing processes.

Engineers place molecule-scale devices in precise orientation

Researchers develop technique to precisely place and orient DNA-based molecular devices on chip surfaces. The method enables thousands of molecules to be reliably oriented, opening up new possibilities for applications like DNA sequencing and protein measurement.

DNA origami enables fabricating superconducting nanowires

Researchers have successfully fabricated superconducting nanowires using DNA origami, allowing for precise addressability and potential applications in nanoelectronics and novel devices. The technique reduces resistance by 90% at low temperatures, enabling the creation of 3D superconducting architectures.

NIST publishes a beginner's guide to DNA origami

DNA origami is a technique that folds long DNA strands to create mini 3D structures for biosensors and drug delivery. A new guide from NIST provides a comprehensive resource for researchers to design efficient nanostructures using state-of-the-art tools.

Davis Instruments Vantage Pro2 Weather Station

Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.

Making 3D nanosuperconductors with DNA

Scientists have developed a platform using DNA self-assembly to create 3D nanoscale architectures that can conduct electricity without resistance. These structures can be used in signal amplifiers, ultrasensitive magnetic field sensors, and other quantum devices.

Klimov studying origami antibodies for threat sensing

Klimov is developing a computational platform to design antibody-antigen interfaces based on DNA origami. The goal is to predict high-affinity peptide sequences that bind to tetanus toxin, targeting structured or unstructured antigen regions.

Gladstone investigators receive 4D Nucleome award from the NIH

The NIH has awarded a 4D Nucleome grant to Gladstone researchers Benoit Bruneau and Katie Pollard to investigate DNA folding in the developing heart. They aim to identify genetic causes of congenital heart disease, which affects one in 100 live births worldwide.

Nikon Monarch 5 8x42 Binoculars

Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.

Unraveling the genome in 3D-space

Scientists have developed a method to create high-resolution maps of contact points between replicated chromosomes, providing insights into the molecular machinery regulating DNA conformation and repair. This breakthrough could shed light on the mechanics underlying genome transport during cell division.

A new twist on DNA origami

Researchers at Arizona State University have developed a new type of meta-DNA structure that can be used to engineer sophisticated nanoscale structures and devices. The meta-DNA self-assembly concept has opened up new possibilities for optoelectronics, including information storage and encryption, as well as synthetic biology.

New method of detecting illnesses including coronavirus and cystic fibrosis

Researchers at the University of Leeds have developed a new system to detect diseases, including coronavirus and cystic fibrosis, by examining individual molecules in blood. The method can compile a detectable signal from just a few biomarkers in just a few minutes, potentially speeding up testing and providing accurate results.

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.

Making the DNA melt curve more accurate

Scientists at NIST have found a way to significantly enhance the accuracy of key information on how heat affects the stability of folded DNA structures. The novel mathematical algorithm automatically accounts for unknown effects, allowing scientists to design durable and complex structures made from DNA.

Engineers use 'DNA origami' to identify vaccine design rules

Researchers used DNA origami to create virus-like particles coated with HIV proteins, eliciting a strong immune response from human B cells. The study found that the optimal spacing between antigens is wider than previously thought, contradicting common assumptions.

Protecting DNA origami for anti-cancer drug delivery

Researchers develop peptoid-coated DNA origami that maintains structural integrity and functionality in different physiological environments, enabling potential use in delivering anti-cancer drugs and proteins. The method involves designing peptoids to stabilize DNA origami, with the brush-type architecture achieving optimal protection.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

Zigzag DNA

Researchers at Delft University of Technology have discovered a new loop structure in DNA, called the 'Z loop', which differs from traditional single loops and occurs more frequently. This discovery sheds light on how condensin proteins fold DNA into a zigzag structure through complex interactions.

'Jumping genes' help stabilize DNA folding patterns

Researchers found that jumping genes, also known as transposable elements, play a crucial role in stabilizing the 3D folding patterns of DNA molecules. This discovery contradicts the long-held assumption that the precise order of letters in the DNA sequence dictates the broader structure of the DNA molecule.

Researchers create synthetic nanopores made from DNA

Scientists successfully created a large synthetic nanopore made from DNA with a functional gating system for sensing and bio-sensing applications. The pore can translocate large protein-sized macromolecules between compartments separated by a lipid bilayer, enabling label-free real-time biosensing of trigger molecules.

Sky & Telescope Pocket Sky Atlas, 2nd Edition

Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.

Physics: DNA-PAINT super-resolution microscopy at speed

Researchers optimized DNA-PAINT for faster image acquisition using orthogonal DNA sequences, achieving sub-10nm spatial resolution and multiplexing capabilities. This improvement allows for biomedically relevant high-throughput studies, such as diagnostic applications.

A new spin on DNA

The team, led by Xiaowei Zhuang, captured the first recorded rotational steps of a molecular motor as it moved from one DNA base pair to another. They used DNA origami to build molecule-sized propellers that allowed them to visualize the motor's movement.

DNA origami to scale-up molecular motors

Researchers at Hokkaido University successfully assembled a larger biomolecular motor system using DNA origami, overcoming previous scalability challenges. The system, combining fibrous microtubules and motor protein kinesins, exhibits dynamic contraction when energized by ATP.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

DNA on auto-pilot

New research allows for fully automated design of DNA staple sequences, enabling the creation of complex nanostructures with ease. This breakthrough advances the field of DNA origami, opening up new possibilities for applications in material science and medicine.

DNA design that anyone can do

Researchers developed a computer program that translates free-form drawings into DNA structures, enabling users to create complex nanostructures for various applications. The 'PERDIX' program uses a mathematical approach to automate the design process, making it accessible to anyone with basic drawing skills.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.

Researchers make world's smallest tic-tac-toe game board with DNA

Caltech scientists develop dynamic DNA nanostructures, enabling the creation of a microscopic tic-tac-toe game board with reconfigurable parts. The technology combines self-assembling tiles and strand displacement to allow for molecular self-reconfiguration, paving the way for more sophisticated nanomachines.

Tying the knot: New DNA nanostructures

Researchers at Arizona State University have developed a method to create complex knot-like nanostructures in single-stranded DNA, with crossing numbers ranging from 9 to 57. This breakthrough enables the design of molecular structures with specific functions and unprecedented complexity.

Two ASU professors receive 2018 NIH New Innovator Award

Nicholas Stephanopoulos and Rizal Hariadi, researchers at the Biodesign Center, received a $2.3 million grant to explore peptide DNA nanotechnology and its applications in biomedicine. The award supports exceptionally creative early career investigators with high-impact projects.

Viral RNA sensing

Scientists have created a nanosized sensing probe for RNA molecules using DNA origami and gold nanorods. The probe can detect concentrations as low as 100 picomolar of the target RNA, making it a promising diagnostic tool for viral infections.

Aranet4 Home CO2 Monitor

Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.

Single-celled architects inspire new nanotechnology

Arizona State University scientists create diatom-like nanostructures using DNA origami, improving elasticity and durability. The method has far-reaching applications in optical systems, semiconductor nanolithography, and medical applications.