Researchers from Kumamoto University create nanocavities using ovalene molecules on gold electrodes, trapping a single thiol molecule. This breakthrough enables precise molecular design for future electronic devices and sensors.
Researchers at SUTD design a multiferroic van der Waals heterostructure combining magnetic and ferroelectric 2D materials, offering voltage switchable magnetism. This material can be used for ultracompact memory devices with minimal energy consumption.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
An interdisciplinary team of Northwestern University researchers has developed a new method to determine the fingerprint of neighboring disorder in 2D materials. This method enables a universal curve that characterizes disorder potentials, leading to improved performance in transistors and gas sensors.
Researchers at Tulane University have developed a new family of two-dimensional materials called transition metal carbo-chalcogenides (TMCC), which combines the properties of two existing families. The TMCC material has promising applications in advanced electronics, high-capacity batteries, and other fields due to its unique set of pr...
Researchers have discovered layered 2D materials that can host unique magnetic features, including skyrmions, which remain stable at room temperature. The discovery could lead to novel low-energy data storage and information processing systems.
Apple AirPods Pro (2nd Generation, USB-C)
Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.
The Rice University lab has improved the recipe for synthesizing molybdenum disulfide (MoS2), a highly sought-after material for its semiconducting properties. By using iodized salt, the team was able to speed up the synthesis process while reducing growth temperatures.
A research team from City University of Hong Kong has developed an efficient electrochemical intercalation method to produce high-yield mono- or few-layer transition metal dichalcogenide (TMD) nanosheets. The new strategy offers a higher degree of control over lithium insertion and can be scaled up for industrial applications.
Rice University researchers have developed a customizing method for producing doped graphene with tailored structures and electronic states. The doping process adds elements to the 2D carbon matrix, making it suitable for use in nanodevices such as fuel cells and batteries.
A German-American research team predicts twenty-eight novel 2D materials with remarkable electronic and magnetic properties. The study utilizes a vast materials database to identify candidates for spintronic applications in computing and smartphones.
A study by researchers at Pusan National University has investigated the relationship between surface structures and nanoscale friction in multi-layered CVD graphene. They found that only the top-most layer of graphene was twisted with respect to the rest, affecting layer-dependent nanoscale friction.
Nikon Monarch 5 8x42 Binoculars
Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.
Researchers at UCLA have created highly flexible yet mechanically robust bioelectronic membranes using van der Waals thin film technology. The membranes can be stretched and flexed over irregular geometries, making them ideal for wearable health-monitoring devices and diagnostic sensors.
Researchers have developed a novel approach to detect non-uniformities in 2D materials, enabling the creation of new medical sensors that can detect cancer treatment drugs like doxorubicin. The sensor material combines multiple signals from graphene and molybdenum disulfide to accurately measure analyte concentration.
Researchers at Tokyo University of Science have discovered a method to improve the crystallinity of coordination nanosheets by mixing two metal ion solutions. This approach results in higher crystallinity and improved performance in devices such as electronics and batteries. The findings open a new pathway for tuning the functional pro...
Rigol DP832 Triple-Output Bench Power Supply
Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.
A team of researchers proposed a novel approach to spintronics, demonstrating dissipationless conversion between magnetic spin and electric charge in an emergent superfluid in 2D materials. This breakthrough could lead to the development of more efficient spintronic devices.
A research group led by Ryuichi Shindou proposes a new phenomenon where magnetic spin and electric charge are converted without energy loss in emergent superfluids of 2D materials. This conversion is made possible by exciton condensates, which exhibit dissipationless supercurrent flows.
Researchers review current research on 2D materials, highlighting their potential for quantum light sources and integrated circuits. The scientists also discuss recent advances in hybrid devices and scalable quantum photonic technologies.
Researchers at MIT have developed ultrathin superconducting qubits using hexagonal boron nitride, enabling smaller devices with reduced interference. The material's defect-free structure reduces cross-talk, paving the way for thousands of qubits in a device.
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
Researchers at Japan Advanced Institute of Science and Technology developed a graphene sensor that detects electric fields with improved efficiency and reduced size. The mechanism involves the transfer of charges between graphene and traps, allowing for the detection of field polarity and magnitude.
Scientists at Chalmers University of Technology discovered a way to create a stable resonator using two parallel gold flakes in a salty aqueous solution. The structure can be manipulated and used as a chamber for investigating materials and their behavior, with potential applications in physics, biosensors, and nanorobotics.
Using 2D materials, researchers have built superconducting qubits that are significantly smaller than previous designs. The new capacitors store energy without interfering with qubit information storage. This breakthrough paves the way for smaller quantum computers and could lead to new applications of 2D materials.
Scientists reveal an ultrafast and high-yield polaronic exciton dissociation mechanism in 2D perovskites, contradicting previous theories. This study confirms that free-carriers dominate charge carriers in 2D perovskites under room temperature.
Fluke 87V Industrial Digital Multimeter
Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.
Scientists from City University of Hong Kong successfully developed battery-like electrochemical Nb2CTx MXene electrodes with stable voltage output and high energy density. The findings break the performance bottleneck of MXene devices, exhibiting superior rate capability, durable cyclic performance, and high energy density.
Researchers have successfully demonstrated laser emission from ultra-thin crystals consisting of three atomic layers, a breakthrough that could lead to miniaturized circuits and future quantum applications. The discovery showcases the potential of these materials as a platform for new nanolasers capable of operating at room temperature.
A RMIT-led collaboration demonstrates large in-plane anisotropic magnetoresistance (AMR) in monolayer WTe2, a quantum spin Hall insulator. The team successfully fabricates devices and observes typical transport behaviors, showing promise for future low-energy electronics.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
Scientists fabricate 1D and 2D boron sulfide (BS) nanosheets with unique electronic properties that can be controlled by changing the number of layers. The bandgap energy decreases as more layers are added, making BS a potential n-type semiconductor material.
The study introduces a versatile method to tune the interaction strength in 2D heterostructures by applying electrical fields. This allows for the exploration of wide parameter ranges and opens up new perspectives for quantum simulation.
A new study proves that ultra-short pulses of light can drive transitions to new phases of matter in tungsten disulfide (WS2) atoms, aiding the search for future low-energy electronics. The findings show that even ultrashort pulses are as effective in triggering state changes as continuous illumination.
Sky & Telescope Pocket Sky Atlas, 2nd Edition
Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.
Australian researchers have made a significant step towards ultra-low energy electronics by demonstrating the dissipationless flow of exciton polaritons at room temperature. The breakthrough involves placing a semiconductor material between two mirrors, allowing the excitons to propagate without losing energy.
Researchers developed a simple and fast way to create complex semiconductors by growing 2D perovskites precisely layered with other materials, resulting in crystals with wide electronic properties. The assembly takes place in vials where chemical ingredients tumble around in water, with barbell-shaped molecules directing the action.
Researchers from SUTD discover a family of 2D semiconductors with Ohmic contacts, reducing electrical resistance and generating less waste heat. This breakthrough could pave the way for high-performance and energy-efficient electronics, potentially replacing silicon-based technology.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
A team of researchers at Purdue University developed ultrathin quantum sensors with 2D materials by applying a gold film to increase the brightness of spin qubits. This improved the contrast of their magnetic resonance signal and enhanced the sensitivity for detecting magnetic fields, local temperature, and pressure.
Researchers found that spin-orbit coupling induces asymmetric interactions between electrons in chromium triiodide, affecting its topological excitations. This discovery could exist in other 2D van der Waals magnets and has implications for spintronics.
Scientists created a reliable true random number generator using atomically thin two-dimensional films, overcoming long-term stability issues and power consumption concerns. The innovation uses memristors to produce fluctuating electronic signals with an exceptionally high degree of randomness.
Apple Watch Series 11 (GPS, 46mm)
Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.
Scientists detected electronic and optical interlayer resonances in bilayer graphene by twisting one layer 30 degrees, resulting in increased interlayer spacing that influences electron motion. This understanding could inform the design of future quantum technologies for more powerful computing and secure communication.
The Center for Atomically Thin Multifunctional Coatings (ATOMIC) has received Phase II funding to expand its research and development of advanced 2D coatings. With the addition of Boise State University, ATOMIC aims to advance technology to more applied solutions and collaborate with industry partners on high-reward projects.
Researchers explore joining topological insulators with magnetic materials to achieve quantum anomalous Hall effect, promising building blocks for low-power electronics. The 'cocktail' approach allows tuning of both magnetism and topology in individual materials, enabling operation closer to room temperature.
Researchers monitored dislocations in silicene sheets after adding silicon atoms, revealing a sequence of reactions that integrate Si atoms. The study could provide solutions to heal structural defects in similar materials.
Kestrel 3000 Pocket Weather Meter
Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.
Researchers have created a new type of 2D material, called a van der Waals heterostructure, which can be rolled up into a thin cylinder. This unique structure holds promise for miniaturized electronics, such as diodes and other devices. The discovery was made by a team of Penn State and University of Tokyo researchers.
Researchers at UTA have developed a technique to program 2D materials into 3D shapes, enabling new technologies for soft robotics and biomimetic manufacturing. The approach allows for the creation of complex 3D structures with doubly curved morphologies and motions, previously difficult to replicate with man-made materials.
A research team at POSTECH has successfully measured and controlled the phase of second-harmonic generation (SHG) in 2D materials, opening new possibilities for nonlinear spectroscopic control methods. The study uses heterobilayer materials to create light with twice the frequency of vibration and controlled phase.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
New computational research by UMBC's Can Ataca and Daniel Wines predicts desirable properties of new 2D materials, saving experimental researchers time and money. The study focuses on group III nitrides, identifying stable alloys with tunable electric and thermoelectric properties.
Researchers confirm flat band behavior in germanium's 2D 'bitriangular' lattice, a structure with potential for exotic states of matter like ferromagnetism and superconductivity. The discovery confirms earlier theoretical predictions and opens up new possibilities for materials design.
Researchers at DGIST have devised a 2D-material-based stacked structure that reduces computing power consumption. The study measured the energy of excitons and trions in multistacked hBN/WS2 coupled quantum wells, revealing a gradual decrease in energy with an increase in stakes.
Researchers Liping Yu and Yingchao Yang will develop new battery and supercapacitor materials using artificial intelligence-aided design. The project aims to overcome limitations in current energy storage devices by predicting, synthesizing, and characterizing new 2D materials.
Sony Alpha a7 IV (Body Only)
Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.
Lehigh University researchers have developed a new complex material design strategy for potential use in neuromorphic computing, using metallocene intercalation in hafnium disulfide (HfS2). The work demonstrates the effectiveness of functionalizing a 2D material with an organic molecule, achieving high tunability and energy efficiency.
Researchers at Vienna University of Technology have discovered new materials to combine with 2D materials, enabling the creation of ultra-thin electronic components. The team found that special crystals containing fluorine atoms can be used as insulators, improving efficiency and speed.
Columbia engineers use sophisticated microscopy techniques to directly image localized states in 2D material, yielding single-photon emitters that can be tuned and controlled. This breakthrough enables the creation of quantum optical circuitry for future photonic applications.
Researchers at DGIST developed a novel dual-resonant method to maximize photon conversion in 2D materials. The method achieves a significant boost in signal intensity and frequency doubling, with potential applications in advanced photonic devices and cheaper diagnostic methods.
A team led by Nathan Youngblood and Feng Xiong investigated how light affects 2D materials like MoTe2 for improved data storage. They found that reducing material dimensions increases efficiency due to energy proportional to area rather than volume.
Apple iPad Pro 11-inch (M4)
Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.
The DFG is funding three Collaborative Research Centres at TU Dresden to develop new classes of synthetic two-dimensional materials and novel design strategies for carbon concrete structures. The research focuses on controlling material properties, manufacturability, and sustainability.
Researchers have measured atomic positions of all atoms in a 2D material and calculated its impact on electronic properties. They found that materials are far from perfect, with constant misalignment, missing, or replaced atoms affecting the system's behavior.
Researchers have found that non-encapsulated few-layer CrI3 has a rhombohedral structure at low temperatures, contradicting previous findings. The study also shows spin-phonon coupling occurring below 60K, which affects the Hamiltonian of Raman modes and has potential implications for novel spintronic devices
Researchers predict a new type of multiferroic material that combines ferromagnetism and electric polarization, potentially leading to efficient magnetic reading and writing. The study suggests that diverse magnetoelectric couplings can be achieved in thin layers, making it a promising direction for practical applications.
Apple MacBook Pro 14-inch (M4 Pro)
Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.
Researchers at King Abdullah University of Science & Technology (KAUST) have discovered a flaky material that improves the performance of organic solar cells. The material, made from tungsten disulfide flakes, enhances the cell's ability to gather holes and reduces resistance, leading to higher efficiency.
Researchers at NUS have discovered a new quasiparticle, the polaronic trion, in molybdenum disulphide that can be tuned by both temperature and electric fields. This enables significant tunability in optoelectronic properties.
Scientists at TU Wien have created an ultra-thin transistor with excellent electrical properties using calcium fluoride as a novel insulator, enabling miniaturization to an extremely small size. The technology has the potential to revive Moore's Law, leading to faster and more powerful computer chips.
DJI Air 3 (RC-N2)
DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.
Researchers at Columbia Engineering developed a two-step, ultra-clean nanofabrication process that separates the pristine device from dirty fabrication processes. This method yields high-performance devices with improved stability and scalability for real-world engineering problems.
Researchers from Tel Aviv University developed a unique spatiotemporal imaging technique to capture the movement of excitons in 2D materials, revealing unprecedented insights into quantum mechanics. The technology enables ultrafast control and extreme spatiotemporal imaging of condensed matter.
Researchers from EPFL's Laboratory of Nanoscale Electronics and Structures have found a way to control some of the properties of excitons, changing their polarization and generating light. This discovery can lead to a new generation of electronic devices with reduced energy loss and heat dissipation.
GQ GMC-500Plus Geiger Counter
GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.
Researchers at PNNL and UCLA verify Gibbs' theory for materials forming row by row, bypassing the nucleation barrier. This discovery provides clues for designing microelectronics and bodily tissues with better control and efficiency.