Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Nano-scaled cavity can trap a single molecule

Researchers from Kumamoto University create nanocavities using ovalene molecules on gold electrodes, trapping a single thiol molecule. This breakthrough enables precise molecular design for future electronic devices and sensors.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Solving the puzzle of 2D disorder

An interdisciplinary team of Northwestern University researchers has developed a new method to determine the fingerprint of neighboring disorder in 2D materials. This method enables a universal curve that characterizes disorder potentials, leading to improved performance in transistors and gas sensors.

Tulane scientists develop powerful family of two-dimensional materials

Researchers at Tulane University have developed a new family of two-dimensional materials called transition metal carbo-chalcogenides (TMCC), which combines the properties of two existing families. The TMCC material has promising applications in advanced electronics, high-capacity batteries, and other fields due to its unique set of pr...

Apple AirPods Pro (2nd Generation, USB-C)

Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.

Rice lab improves recipe for valuable chemical

The Rice University lab has improved the recipe for synthesizing molybdenum disulfide (MoS2), a highly sought-after material for its semiconducting properties. By using iodized salt, the team was able to speed up the synthesis process while reducing growth temperatures.

Graphene gets enhanced by flashing

Rice University researchers have developed a customizing method for producing doped graphene with tailored structures and electronic states. The doping process adds elements to the 2D carbon matrix, making it suitable for use in nanodevices such as fuel cells and batteries.

On the hunt for ultra-thin materials using data mining

A German-American research team predicts twenty-eight novel 2D materials with remarkable electronic and magnetic properties. The study utilizes a vast materials database to identify candidates for spintronic applications in computing and smartphones.

Nikon Monarch 5 8x42 Binoculars

Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.

‘Seeing’ non-uniformities in 2D materials may lead to new medical sensors

Researchers have developed a novel approach to detect non-uniformities in 2D materials, enabling the creation of new medical sensors that can detect cancer treatment drugs like doxorubicin. The sensor material combines multiple signals from graphene and molybdenum disulfide to accurately measure analyte concentration.

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

2D materials under the microscope

Researchers review current research on 2D materials, highlighting their potential for quantum light sources and integrated circuits. The scientists also discuss recent advances in hybrid devices and scalable quantum photonic technologies.

Tiny materials lead to a big advance in quantum computing

Researchers at MIT have developed ultrathin superconducting qubits using hexagonal boron nitride, enabling smaller devices with reduced interference. The material's defect-free structure reduces cross-talk, paving the way for thousands of qubits in a device.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

A pair of gold flakes creates a self-assembled resonator

Scientists at Chalmers University of Technology discovered a way to create a stable resonator using two parallel gold flakes in a salty aqueous solution. The structure can be manipulated and used as a chamber for investigating materials and their behavior, with potential applications in physics, biosensors, and nanorobotics.

Shrinking qubits for quantum computing with atom-thin materials

Using 2D materials, researchers have built superconducting qubits that are significantly smaller than previous designs. The new capacitors store energy without interfering with qubit information storage. This breakthrough paves the way for smaller quantum computers and could lead to new applications of 2D materials.

Fluke 87V Industrial Digital Multimeter

Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.

Ultra-thin crystals as light sources in lasers

Researchers have successfully demonstrated laser emission from ultra-thin crystals consisting of three atomic layers, a breakthrough that could lead to miniaturized circuits and future quantum applications. The discovery showcases the potential of these materials as a platform for new nanolasers capable of operating at room temperature.

Quantifying spin for future spintronics

A RMIT-led collaboration demonstrates large in-plane anisotropic magnetoresistance (AMR) in monolayer WTe2, a quantum spin Hall insulator. The team successfully fabricates devices and observes typical transport behaviors, showing promise for future low-energy electronics.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Electrical control over designer quantum materials

The study introduces a versatile method to tune the interaction strength in 2D heterostructures by applying electrical fields. This allows for the exploration of wide parameter ranges and opens up new perspectives for quantum simulation.

Ultra-short or infinitely long: It all looks the same

A new study proves that ultra-short pulses of light can drive transitions to new phases of matter in tungsten disulfide (WS2) atoms, aiding the search for future low-energy electronics. The findings show that even ultrashort pulses are as effective in triggering state changes as continuous illumination.

Sky & Telescope Pocket Sky Atlas, 2nd Edition

Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.

Sandwich-style construction: Towards ultra-low-energy exciton electronics

Australian researchers have made a significant step towards ultra-low energy electronics by demonstrating the dissipationless flow of exciton polaritons at room temperature. The breakthrough involves placing a semiconductor material between two mirrors, allowing the excitons to propagate without losing energy.

A simple way to get complex semiconductors to assemble themselves

Researchers developed a simple and fast way to create complex semiconductors by growing 2D perovskites precisely layered with other materials, resulting in crystals with wide electronic properties. The assembly takes place in vials where chemical ingredients tumble around in water, with barbell-shaped molecules directing the action.

Towards more energy-efficient 2D semiconductor devices

Researchers from SUTD discover a family of 2D semiconductors with Ohmic contacts, reducing electrical resistance and generating less waste heat. This breakthrough could pave the way for high-performance and energy-efficient electronics, potentially replacing silicon-based technology.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

Rice physicists find 'magnon' origins in 2D magnet

Researchers found that spin-orbit coupling induces asymmetric interactions between electrons in chromium triiodide, affecting its topological excitations. This discovery could exist in other 2D van der Waals magnets and has implications for spintronics.

Keeping it random

Scientists created a reliable true random number generator using atomically thin two-dimensional films, overcoming long-term stability issues and power consumption concerns. The innovation uses memristors to produce fluctuating electronic signals with an exceptionally high degree of randomness.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.

Layered graphene with a twist displays unique quantum confinement in 2-D

Scientists detected electronic and optical interlayer resonances in bilayer graphene by twisting one layer 30 degrees, resulting in increased interlayer spacing that influences electron motion. This understanding could inform the design of future quantum technologies for more powerful computing and secure communication.

National 2D materials research center wins NSF funding

The Center for Atomically Thin Multifunctional Coatings (ATOMIC) has received Phase II funding to expand its research and development of advanced 2D coatings. With the addition of Boise State University, ATOMIC aims to advance technology to more applied solutions and collaborate with industry partners on high-reward projects.

Mixing a cocktail of topology and magnetism for future electronics

Researchers explore joining topological insulators with magnetic materials to achieve quantum anomalous Hall effect, promising building blocks for low-power electronics. The 'cocktail' approach allows tuning of both magnetism and topology in individual materials, enabling operation closer to room temperature.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

Sushi-like rolled 2D heterostructures may lead to new miniaturized electronics

Researchers have created a new type of 2D material, called a van der Waals heterostructure, which can be rolled up into a thin cylinder. This unique structure holds promise for miniaturized electronics, such as diodes and other devices. The discovery was made by a team of Penn State and University of Tokyo researchers.

2D material controls light twice stronger

A research team at POSTECH has successfully measured and controlled the phase of second-harmonic generation (SHG) in 2D materials, opening new possibilities for nonlinear spectroscopic control methods. The study uses heterobilayer materials to create light with twice the frequency of vibration and controlled phase.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

UMBC team reveals possibilities of new one-atom-thick materials

New computational research by UMBC's Can Ataca and Daniel Wines predicts desirable properties of new 2D materials, saving experimental researchers time and money. The study focuses on group III nitrides, identifying stable alloys with tunable electric and thermoelectric properties.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

Scientists identify new material with potential for brain-like computing

Lehigh University researchers have developed a new complex material design strategy for potential use in neuromorphic computing, using metallocene intercalation in hafnium disulfide (HfS2). The work demonstrates the effectiveness of functionalizing a 2D material with an organic molecule, achieving high tunability and energy efficiency.

New materials for extra thin computer chips

Researchers at Vienna University of Technology have discovered new materials to combine with 2D materials, enabling the creation of ultra-thin electronic components. The team found that special crystals containing fluorine atoms can be used as insulators, improving efficiency and speed.

Tiny bubbles make a quantum leap

Columbia engineers use sophisticated microscopy techniques to directly image localized states in 2D material, yielding single-photon emitters that can be tuned and controlled. This breakthrough enables the creation of quantum optical circuitry for future photonic applications.

Shedding a new light on 2D materials

A team led by Nathan Youngblood and Feng Xiong investigated how light affects 2D materials like MoTe2 for improved data storage. They found that reducing material dimensions increases efficiency due to energy proportional to area rather than volume.

Apple iPad Pro 11-inch (M4)

Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.

DFG to fund three Collaborative Research Centres at TU Dresden

The DFG is funding three Collaborative Research Centres at TU Dresden to develop new classes of synthetic two-dimensional materials and novel design strategies for carbon concrete structures. The research focuses on controlling material properties, manufacturability, and sustainability.

Deciphering disorder

Researchers have measured atomic positions of all atoms in a 2D material and calculated its impact on electronic properties. They found that materials are far from perfect, with constant misalignment, missing, or replaced atoms affecting the system's behavior.

What decides the ferromagnetism in the non-encapsulated few-layer CrI3

Researchers have found that non-encapsulated few-layer CrI3 has a rhombohedral structure at low temperatures, contradicting previous findings. The study also shows spin-phonon coupling occurring below 60K, which affects the Hamiltonian of Raman modes and has potential implications for novel spintronic devices

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

A flaky option boosts organic solar cells

Researchers at King Abdullah University of Science & Technology (KAUST) have discovered a flaky material that improves the performance of organic solar cells. The material, made from tungsten disulfide flakes, enhances the cell's ability to gather holes and reduces resistance, leading to higher efficiency.

Ultrathin transistors for faster computer chips

Scientists at TU Wien have created an ultra-thin transistor with excellent electrical properties using calcium fluoride as a novel insulator, enabling miniaturization to an extremely small size. The technology has the potential to revive Moore's Law, leading to faster and more powerful computer chips.

DJI Air 3 (RC-N2)

DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.

Ultra-clean fabrication platform produces nearly ideal 2D transistors

Researchers at Columbia Engineering developed a two-step, ultra-clean nanofabrication process that separates the pristine device from dirty fabrication processes. This method yields high-performance devices with improved stability and scalability for real-world engineering problems.

Excitons pave the way to more efficient electronics

Researchers from EPFL's Laboratory of Nanoscale Electronics and Structures have found a way to control some of the properties of excitons, changing their polarization and generating light. This discovery can lead to a new generation of electronic devices with reduced energy loss and heat dissipation.

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.