Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

When does a conductor not conduct?

A new atomically-thin material has been discovered that can switch between an insulating and conducting state by controlling the number of electrons. This property makes it a promising candidate for use in electronic devices such as transistors.

Study shows: 2D materials rotate light polarization

A German-Indian research team has achieved a significant breakthrough in developing miniaturized optical isolators by utilizing ultra-thin two-dimensional materials. The researchers successfully rotated the polarization of visible light by several degrees under small magnetic fields, paving the way for on-chip integration of optical co...

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Physics-based predictive tool will speed up battery and superconductor research

Researchers from the University of Tokyo have developed a physics-based predictive tool that quickly identifies stable intercalated materials for advanced electronics and energy storage devices. By analyzing over 9,000 compounds, the tool uses straightforward principles from undergraduate chemistry to predict host-guest stability.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

New 2D material with super-heavy electrons

Researchers at Uppsala University and Columbia University have created a new 2D quantum material, CeSiI, with atoms-thin layers of cerium, silicon, and iodine. The material features super-heavy electrons with an effective mass up to 100 times that of ordinary materials.

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.

2D material reshapes 3D electronics for AI hardware

Researchers developed a novel approach to integrate multiple functions into a single chip using monolithic 3D integration of layered 2D materials. This technology offers unprecedented efficiency and performance in AI computing tasks, enabling faster processing, less energy consumption, and enhanced security.

Scaling up nano for sustainable manufacturing

Researchers have developed a new self-assembling nanosheet that can create functional and sustainable nanomaterials for various applications. The material is recyclable and can extend the shelf life of consumer products, enabling a sustainable manufacturing approach.

Solving quantum mysteries: New insights into 2D semiconductor physics

Researchers from Monash University have introduced a new theoretical study on quantum impurities, exploring their behavior in two-dimensional semiconductors. The 'quantum virial expansion' method sheds light on the complex interactions between impurities and their surroundings in 2D materials.

Molybdenene – the "metallic" relative of graphene

Scientists have successfully produced a thin sheet of molybdenum, similar to graphene, with impressive properties. Molybdenene exhibits mechanical stability, freely moving electrons, and is an interesting candidate for catalysts and advanced imaging techniques.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.

Infrared avalanche photodiodes from bulk to 2D materials

Researchers have developed infrared avalanche photodiodes using bulk and 2D materials, offering improved detection efficiency and flexibility in heterostructure design. The devices exhibit exceptional capabilities such as mechanical flexibility and strong light-matter coupling.

Breakthrough: Peering into nanofluidic mysteries one photon at a time

Scientists have developed a new approach to study molecular behavior in confined spaces, allowing for real-time tracking of individual molecules within nanofluidic structures. This breakthrough enables the use of single-photon emitters as nanoscale probes, providing unprecedented insights into molecular properties and behaviors.

Making big leaps in understanding nanoscale gaps

Researchers at Brookhaven Lab's Center for Functional Nanomaterials have created a new layered structure with unique energy and charge transfer properties. The discovery could lead to advancements in technologies such as solar cells and optoelectronic devices.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

Ribbons of graphene push the material’s potential

Researchers at Columbia University have developed a new fabrication technique to create devices with uniform twist angles and strain profiles in graphene. This allows for the systematic exploration of the material's properties and behavior, potentially leading to breakthroughs in quantum materials science.

An innovative addition to the chemist’s ‘toolbox’

Researchers at the University of Missouri have developed a new type of nanoclay material that can be customized to perform specific tasks. This breakthrough could lead to advances in fields such as medical science, environmental science, and more.

Researchers put a new twist on graphite

A team of researchers at the University of Washington has discovered a way to imbue bulk graphite with physical properties similar to those of graphene, a single-layer sheet. This breakthrough could unlock new approaches for studying unusual and exotic states of matter and bring them into everyday life.

DJI Air 3 (RC-N2)

DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.

Front cover highlights "innovative approach" of research into 2D materials

Lancaster University researchers have developed a novel scanning thermal microscopy approach to directly measure the heat conductivity of two-dimensional materials. This breakthrough enables the creation of efficient waste heat scavengers generating cheap electricity, new compact fridges, and advanced optical and microwave sensors and ...

2D nanosheets for sustainable carbon capture

A team of researchers from SUTD and A*STAR has developed a quick and energy-efficient technique to produce 2D mica nanosheets, which have shown an 87% higher CO2 adsorption capacity than bulk mica. The nanosheets' high specific surface area and porosity enable effective carbon capture.

Davis Instruments Vantage Pro2 Weather Station

Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.

Smart in-memory light sensors perform image recognition

Researchers at KAUST developed smart digital image sensors that can recognize images with high accuracy, using a charge-trapping 'in-memory' sensor sensitive to visible light. The devices have an extremely long-lived retention time of up to 10 years and can perform optical sensing, storage, and computation.

Apple AirPods Pro (2nd Generation, USB-C)

Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.

Fabrication and applications of van der Waals heterostructures

The article discusses the fabrication and applications of van der Waals heterostructures (vdWHs), which have unique properties and potential for exploring condensed matter physics. Various strategies for fabricating vdWHs were developed in the past decade, leading to promising functionalities in diverse fields.

Strong ultralight material could aid energy storage, carbon capture

Researchers engineered a lightweight material by fine-tuning interlayer interactions in 2D polymers, retaining desirable mechanical properties even as a multilayer stack. The material's strong interlayer interaction is attributed to hydrogen bonding among special functional groups.

Chemical scissors enable structural editing of layered materials

Researchers developed a chemical scissors-mediated structural editing strategy to regulate the structure and elemental composition of MAX phases/MXenes. This approach enables the creation of novel MAX phase and MXene materials with improved functional applications.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

SUTD researchers developed novel 2D material with virus to kill cancer cells

Scientists from SUTD design a novel thermal-based therapy nano-system that destroys over 20% of pancreatic cancer cells using microsecond electrical pulses, improving cancer cell targeting accuracy and bio-compatibility. The introduction of the M13 virus enhances electro-thermal therapy performance by assembling more on cancer cells.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.

A crystal shape conundrum is finally solved

Researchers at Rice University have developed a method to predict the shapes of crystals that lack symmetry by assigning arbitrary latent energies to their surfaces. This approach uses closure equations with arbitrary parameters to mimic nature's solution, allowing for accurate crystal shape predictions.

How “2D” materials expand

Scientists have developed a method to accurately measure the thermal expansion coefficient of 2D materials when heated, which could help engineers design next-generation electronics. The approach uses laser light to track vibrations of atoms in the material, allowing for precise measurements and confirming theoretical calculations.

GoPro HERO13 Black

GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.

Electron liquids on the cutting edge

Researchers have controlled a one-dimensional electron fluid to an unprecedented degree, discovering new properties of Tomonaga-Luttinger liquids in two-dimensional materials. The team's findings could pave the way for more robust quantum computers with enhanced fault-tolerance.

New era of two-dimensional ferroelectrics

Researchers review emerging field of 2D ferroelectric materials with layered van-der-Waals crystal structures, offering new properties and functionalities not found in conventional materials. These materials show easily stackable nature, making them attractive as building blocks for post-Moore's law electronics.

Aranet4 Home CO2 Monitor

Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.

Trapping polaritons in an engineered quantum box

Australian researchers have engineered a quantum box for polaritons in a two-dimensional material, achieving large polariton densities and a partially 'coherent' quantum state. The novel technique allows researchers to access striking collective quantum phenomena and enable ultra-energy-efficient technologies.

Some everyday materials have memories, and now they can be erased

Researchers at Penn State developed a method to erase memories in disordered solids, allowing for new opportunities in diagnostics and programming of materials. The study provides insight into how memories form in these materials and demonstrates a way to 'read' and erase them.

Creality K1 Max 3D Printer

Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.

Building blocks of the future for photovoltaics

A research team from the University of Göttingen has observed the build-up of dark Moiré interlayer excitons for the first time using femtosecond photoemission momentum microscopy. This breakthrough allows scientists to study the optoelectronic properties of new materials in unprecedented detail.

Manipulating interlayer magnetic coupling for future spintronics

The study observes electric gate-controlled exchange-bias effect in van der Waals heterostructures, enabling scalable energy-efficient spin-orbit logic. The team successfully tunes the blocking temperature of the EB effect via an electric gate, allowing for the EB field to be turned 'ON' and 'OFF'.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

Singapore researchers give 2D electronics a performance boost

Scientists from A*STAR and Fudan University found that placing 2D materials on substrates with bulged morphologies enhances carrier mobility by two orders, paving the way for competitive performance in field-effect transistors and thermoelectric devices. The discovery overcomes the intrinsic carrier mobility limit of the material.