Researchers will investigate fundamental properties of unstable atomic nuclei, focusing on neutron-rich and neutron-deficient isotopes. The project aims to improve theoretical models in nuclear structure and understand the origin of chemical elements in nuclear astrophysics.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
Researchers from UCLA, LMU, and JGU have successfully excited the atomic nucleus of thorium-229 using laser light in a non-transparent host material. This achievement opens up new avenues for nucleus-based quantum technologies.
Researchers have discovered a new 'Island of Inversion' in the most symmetric region of the nuclear chart, where protons and neutrons equal each other. This finding challenges long-held assumptions about structural inversions and provides insights into fundamental forces that bind matter together.
Physicists have directly measured the masses of phosphorus-26 and sulfur-27, crucial for determining the nuclear reaction rate during X-ray bursts. The new data reveal a significant enhancement in the reaction rate, increasing the abundance ratio of sulfur-27 to phosphorus-26.
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
Researchers propose a novel method for detecting dark matter using thorium-229 nucleus properties, with potential to detect forces 10 trillion times weaker than gravity. The new approach aims to identify minute deviations in the absorption spectrum of thorium-229 to reveal dark matter's influence.
Researchers at Chinese Academy of Sciences have measured the mass of silicon-22, revealing a new proton magic number. This finding provides deeper insight into exotic nuclear structures and nucleon interactions, shedding light on element formation in the Universe.
Researchers at the University of Jyväskylä have measured the heaviest nucleus decaying via proton emission, revealing a 'watermelon-shaped' structure and unprecedented interactions in heavy nuclei. This discovery expands our understanding of atomic nuclei and their properties.
A research team led by Professor Randolf Pohl has achieved a significant breakthrough in determining the charge radius of Helium-3 with laser spectroscopy, achieving 15 times more precision than traditional particle accelerator-based methods.
Researchers at A1 Collaboration successfully produced hydrogen-6 in an electron scattering experiment, challenging current understanding of multi-nucleon interactions. The measurement revealed a stronger interaction between neutrons within the nucleus than expected, indicating a lower ground-state energy for ⁶H.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
The thorium-229 nuclear optical clock has the potential to achieve a very high-precision time and frequency standard due to its unique properties. Despite significant progress, numerous challenges remain, including temperature sensitivity and the scarcity of the isotope.
RHIC physicists will complete data collection for one of the collider's central goals: creating and studying a unique form of matter known as a quark-gluon plasma (QGP). The QGP is expected to provide crucial insights for the future Electron-Ion Collider (EIC), which will be built by reusing components of RHIC.
A team at University of Queensland has made a breakthrough in muonic atom research, showing that nuclear polarisation does not limit studies of muonic atoms. The finding provides a clear path for using muonic atoms to better understand the magnetic structure of the nucleus.
Researchers have acquired direct evidence of rare, pulsing pear-shaped structures in the nucleus of Gadolinium-150, a long-lived radioactive isotope. The study provides definitive proof of a strong collective 'octupole excitation' and opens a new window into the quantum world.
Nikon Monarch 5 8x42 Binoculars
Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.
Researchers used X-ray light to analyze the structure of 2-thiouracil, a substance with medically relevant properties. The study found that UV radiation causes the molecule to bend, resulting in the protrusion of the sulfur atom and making it reactive.
A new study has challenged the long-held belief that atomic nuclei are perfectly spherical, revealing that lead-208 is slightly elongated and resembles a rugby ball. The discovery was made using high-precision experimental equipment and has far-reaching implications for nuclear physics and astrophysics.
Researchers measured high-precision transition frequencies and isotope mass ratios in ytterbium isotopes to confirm a nonlinearity anomaly. The team established a new limit for the existence of dark forces and gained insights into atomic nucleus deformation, opening doors for collaboration in physics research.
Apple MacBook Pro 14-inch (M4 Pro)
Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.
Researchers have developed a new quantum sensing technology that can detect individual nuclei, revealing tiny differences in molecular structure and dynamics. This unprecedented sensitivity enables scientists to study the building blocks of nature at an entirely new scale, leading to breakthroughs in fields like drug development.
Scientists have discovered proton halos in several exotic atomic nuclei, including phosphorus-26 and sulfur-27, using precise nuclear masses. The findings shed light on potential experimental and theoretical research on proton halo nuclei.
Researchers use precise measurements of radioactive decay processes to calculate quark mixing, uncovering effects involving weak interactions that dominate uncertainty. The work may hold promise for uncovering footprints of new physics in nuclear processes.
Researchers at Cal Poly and an international team are exploring unproven theories related to nuclear decay and the nature of matter. They aim to detect a type of decay that is currently forbidden by physics laws, which could reveal insights into the universe's origins.
Researchers from the University of Liverpool and international collaboration measure nuclear radius of nobleium and fermium isotopes using laser spectroscopy. The study reveals smooth trends in charge radii and reduced influence of shell effects at superheavy element levels.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
Researchers have developed a new method to image nuclear shapes using high-energy particle smashups at RHIC, revealing subtle details about atomic nuclei. This technique complements lower energy methods and has implications for fields like nuclear fission, neutron stars, and exotic particle decay.
Scientists at Brookhaven National Laboratory have demonstrated that complex calculations can accurately predict the distribution of electric charges in mesons. The new predictions match measurements from low-energy experiments and extend into the high-energy regime planned for future collider experiments.
Researchers at University of Copenhagen used experimental data to predict hitherto unchartered changes in the shape of nuclei, shedding light on nuclear structure and strong interactions. The study used a high-energy collision experiment at CERN's LHC to analyze the resulting products and reconstruct the processes.
Researchers studied fermium isotopes with different neutron numbers, revealing a steady increase in nuclear charge radius across the neutron number 152. The experimental results confirmed theoretical predictions on nuclear shell effects and paved the way for further laser spectroscopic studies of heavy elements.
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.
Researchers at Lund University successfully produced livermorium atoms using a new method, opening the door to creating even heavier elements like number 120. The discovery was made possible by a custom-built detector system called SHREC, which allowed for efficient registration of the atoms.
Researchers at TU Wien have developed computer simulations to investigate the temporal development of quantum entanglement. They found that the 'birth time' of an electron flying away from an atom is related to the state of the remaining electron, demonstrating a quantum-physical superposition.
Researchers have introduced Tune-IMS, a technique that improves the precision of isochronous mass spectrometry for measuring short-lived atomic nuclei. The method has been successfully tested on several nuclides and has shown higher precision than previous IMS methods.
Researchers propose excited states of neutrons could explain contradictory measurements of average lifetime. These states would have slightly higher energy and different lifetimes, resulting in significant discrepancies between measured results.
Apple AirPods Pro (2nd Generation, USB-C)
Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.
Researchers have discovered that the strength of a coupling between nuclear spins depends on the chirality or handedness of a molecule. The study found that in molecules with the same handedness, the nuclear spin aligns in one direction, while in molecules with opposite handedness, it aligns in the opposite direction.
Researchers from Okayama University successfully controlled the population of the thorium-229 isomeric state using X-rays, a crucial step towards building a compact and portable nuclear clock. This achievement demonstrates the potential for nuclear clocks to advance fundamental physics research and other applications such as GPS systems.
Researchers from Delft University of Technology initiated a controlled movement in an atom's nucleus, interacting with an electron and reading it out using a scanning tunneling microscope. This interaction enables the storage of quantum information inside the nucleus, protected from external disturbances.
Scientists at TU Wien and JILA/NIST have successfully created the world's first nuclear clock, leveraging thorium atomic nuclei to achieve ultra-high precision measurements. The breakthrough combines a high-precision optical atomic clock with a high-energy laser system, setting the stage for future improvements in precision.
The distribution of outermost shell electrons was experimentally observed in organic molecules, revealing a fragmented electron cloud distribution. This demonstrates the quantum mechanical wave nature of electrons and validates a theoretical model proposed by quantum chemistry.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
Researchers at Brookhaven National Laboratory's STAR Collaboration have discovered a new kind of antimatter nucleus, antihyperhydrogen-4, composed of four antimatter particles. The discovery was made using the Relativistic Heavy Ion Collider and analyzed details of collision debris.
Scientists have successfully created element 116 using a beam of titanium-50, marking a crucial step towards creating the heaviest element yet, element 120. This achievement validates the method of production and provides a promising path forward for researchers to explore elements at the extremes.
A new study by Osaka Metropolitan University researchers suggests that the nuclear structure of titanium-48 changes depending on its distance from the nucleus. The findings provide clues to the α-decay process in heavy nuclei and could help solve a 100-year-old physics mystery.
Scientists at Tsinghua University and TU Wien have created a time crystal made of giant Rydberg atoms, exhibiting spontaneous symmetry breaking and oscillating light absorption. This breakthrough deepens our understanding of the time crystal phenomenon, offering potential applications in sensors.
Researchers uncovered details about nuclear structures using relativistic isobar collisions, highlighting differences in multiplicity distribution and elliptic flow. The study employed advanced models and technology to analyze the effects of nuclear deformations and initial fluctuations on ratio observables.
Kestrel 3000 Pocket Weather Meter
Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.
Scientists have successfully embedded a thorium atom within a crystal to raise its energy state using lasers, allowing for precise measurements of time, gravity, and other fields. This breakthrough could unlock the secrets of fundamental constants of nature and test if they vary.
Researchers at the University of Illinois and the University of Duisburg-Essen have developed a new method to probe the electronic properties of 2D materials using ion irradiation. The technique, which uses ions instead of laser light, enables highly localized and short-time excitations in the material, allowing for high-precision stud...
Researchers crack long-standing challenge in quantum many-body theory by introducing wavefunction matching method, enabling precise ab initio calculations for atomic nuclei. This breakthrough resolves sign oscillations issues and provides accurate predictions for nuclear properties.
GQ GMC-500Plus Geiger Counter
GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.
Physicists have achieved a breakthrough by exciting thorium atomic nuclei with lasers for the first time, enabling precise tracking of their return to original energy states. This discovery has far-reaching implications for precision measurement techniques, including nuclear clocks and fundamental questions in physics.
Researchers have made groundbreaking measurements of the electron capture of the artificial isotope holmium-163, which allows them to determine a Q value for the decay process. This enabled them to measure the neutrino mass with unprecedented precision using a super-sensitive scale and detector.
Researchers at MIT have discovered a new way that neutrons can interact with materials, potentially providing insights into material properties and quantum effects. The discovery involves the binding of neutrons to nanoscale atomic clusters called quantum dots.
Creality K1 Max 3D Printer
Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.
Scientists at STAR collaboration observe magnetic field's impact on charged particles, providing new insight into quark-gluon plasma's electrical conductivity. The findings give scientists a way to study QGP's fundamental properties, shedding light on the universe's most powerful magnetic fields.
Researchers at UNSW Sydney have successfully encoded quantum information in four distinct ways using a single antimony atom. This breakthrough enables more flexibility in designing future quantum computing chips, with each method offering unique advantages and potential trade-offs.
A team of researchers, led by Associate Professor Hiroyuki Fujioka from Tokyo Institute of Technology, investigated the feasibility of bound tetraneutron emission in thermal neutron-induced fission of Uranium-235. They found that the instrumental neutron activation method can be applied to address open questions in nuclear physics.
GoPro HERO13 Black
GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.
Researchers found that ancient stars created elements with atomic masses greater than 260, challenging current knowledge. This discovery provides insight into the process of heavy element formation in stars and could help explain the diversity of elements on Earth.
Scientists have discovered a molecular-type structure in the ground state of beryllium-10, a neutron-rich nucleus. The experiment used an inverse kinematics knockout reaction to validate the presence of this structure, which is exceptionally rare in atomic nuclei.
Researchers from Eötvös Loránd University have mapped the space-time geometry of quark matter using femtoscopy techniques. This study sheds light on the strong interaction governing quark matter and atomic nuclei, a fundamental area still in its early stages.
Researchers have successfully excited a scandium-45 nuclear isomer using X-ray pulses, paving the way for the creation of the world's most precise clock. The breakthrough has significant implications for fields such as nuclear physics, satellite navigation, and telecommunications.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
New measurements from RHIC's STAR detector suggest the shape of small quark-gluon plasma drops is influenced by the substructure of smaller projectile nuclei. This contradicts previous findings from PHENIX detector, which attributed QGP shape to larger-scale positions of nucleons. The results may deepen understanding of properties and ...
Researchers simulated all known energy states of the carbon nucleus, providing insights into the puzzling Hoyle state and its configuration. The study reveals that protons and neutrons are clustered into groups, creating spatial formations with distinct shapes and energies.
Researchers at Kyoto University have successfully created stable plasmas using microwaves, a key step towards harnessing nuclear fusion's massive energy potential. The team identified three crucial steps in plasma production and used Heliotron J to generate the dense plasmas.
Fluke 87V Industrial Digital Multimeter
Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.
A University of Queensland-led research team is using an unusual caesium atom to search for dark matter particles. The team's work may also improve atomic theory calculations and technology, such as navigation systems.
Scientists at Ohio State University have made a groundbreaking discovery, allowing them to view inside the deepest recesses of atomic nuclei. By studying how different types of particles interact with each other, they were able to map the arrangement of gluons within atomic nuclei with unprecedented precision.
Researchers from Iowa State University and Tufts University are using quantum computing to simulate and study atomic nuclei. They aim to understand the fundamental laws of nature governing nuclear formation in the Big Bang and supernovae.
Researchers at MIT have proposed a new approach to making qubits and controlling them using beams of light from two lasers of slightly different colors. This method enables the direct manipulation of nuclear spin, allowing for precise identification and mapping of isotopes, as well as improved coherence times for quantum memory.
Researchers from the University of Rochester and MINERvA collaboration used beams of neutrinos at Fermilab to investigate proton structure. This technique offers a new view on measuring protons using neutrino scattering, providing insights into nuclear effects and improving future measurements of neutrino properties.
DJI Air 3 (RC-N2)
DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.