Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Manipulating wrinkles could lead to graphene semiconductors

Researchers at RIKEN have discovered that wrinkles in graphene can form a junction-like structure, changing its electronic properties from zero-gap conductor to semiconductor and back. By manipulating the carbon structure using scanning tunneling microscopy, they have opened up new possibilities for graphene engineering.

Black phosphorus surges ahead of graphene

A Korean team tunes black phosphorus' band gap to form a superior conductor, enabling mass production for electronic and optoelectronic devices. This breakthrough allows for great flexibility in device design and optimization.

Stanford researchers stretch a thin crystal to get better solar cells

Researchers at Stanford University have created an artificial crystal with a variable band gap using molybdenum disulfide, a material that can be stretched without breaking. This could lead to the development of more efficient solar cells that absorb energy from a broader spectrum of light.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

New method allows for greater variation in band gap tunability

Researchers at Northwestern University have developed a novel method to control the electronic band gap in complex oxide materials without altering their composition. This can lead to better performance in electro-optical devices and new energy-generation materials.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

From the bottom up: Manipulating nanoribbons at the molecular level

Scientists at Berkeley Lab and UC Berkeley have developed a new method to synthesize graphene nanoribbons from pre-designed molecular building blocks, enabling the creation of width-varying nanoribbons with enhanced properties. This breakthrough represents progress towards controllably assembling molecules into desired shapes.

Revolutionary solar-friendly form of silicon shines

A team of Carnegie scientists synthesized a novel form of silicon with a quasi-direct band gap, suitable for high-efficiency solar applications. The new allotrope, Si24, has an open framework structure and is stable at ambient pressure, making it potentially more effective than conventional diamond-structured silicon

Solar cell compound probed under pressure

Researchers at Carnegie Institution use high pressure to engineer gallium arsenide, a promising semiconductor material for solar cells. The study found that applying pressure can widen the 'band gap' and induce metallic electronic properties in two different crystalline structures of GaAs.

Excitonic dark states shed light on TMDC atomic layers

Researchers discovered excitonic dark states in single-layer tungsten disulfide monolayers, revealing intense many-electron effects in 2D semiconductors. This finding holds promise for exploiting unusual light-matter interactions and enabling better designs of heterostructures.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

Carbyne morphs when stretched

Rice University scientists discovered that stretching carbyne by just 3% opens a band gap, enabling semiconducting properties. This finding could revolutionize mechanically activated nanoscale electronics and optics.

UNIST research team opens graphene band-gap

A UNIST research team has developed a method for the mass production of boron/nitrogen co-doped graphene nanoplatelets, which led to the fabrication of graphene-based field-effect transistors (FETs) with semiconducting nature. This breakthrough opens up opportunities for practical use in electronic devices.

Penn and Drexel team demonstrates new paradigm for solar cell construction

Researchers from Penn and Drexel have demonstrated a novel solar cell construction method, which may improve energy absorption efficiency and reduce manufacturing costs. The discovery is based on a material exhibiting the bulk photovoltaic effect, allowing for more efficient harvesting of visible light.

SF State researchers steer light in new directions

A team of researchers led by Weining Man has developed a two-dimensional disordered photonic band gap material that can manipulate the flow and radiation of light. The material breaks away from traditional photonic crystals, allowing for arbitrarily shaped paths to steer light.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.

New twist in the graphene story

Researchers have discovered a unique new twist to the story of graphene, which appears to solve a long-standing problem in device development. The twist creates a new electronic structure in bilayer graphene, leading to surprisingly strong changes in its properties.

Stacking 2-D materials produces surprising results

Researchers at MIT have discovered a method to engineer graphene with a band gap, necessary for transistors and semiconductor devices. The new technique involves stacking graphene with hexagonal boron nitride, producing a hybrid material with varying electronic characteristics.

Award-winning PV cell pushes efficiency higher

Scientists at NREL have developed a new type of solar cell that converts 44% of sunlight into electrical energy, surpassing previous records. The cell uses multiple layers to capture different wavelengths of light and has the potential to be used in utility-scale energy production.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

Photonic gels are colorful sensors

Researchers at Rice University and MIT developed a thin-film polymer metamaterial that changes color in response to ions, enabling the creation of inexpensive sensors for food spoilage detection, security, and high-contrast displays. The sensors can be tuned to react in specific ways by adjusting the solvent used.

How to avoid traps in plastic electronics

A study reveals that charge traps in plastic semiconductors are caused by a similar energy level, allowing for the estimation of expected electron current and design of trap-free materials. This breakthrough has important implications for both plastic LEDs and solar cells.

Bandgap engineering for high-efficiency solar cell design

Theoretical calculations predict a significant difference in the bandgap between ordered and fully disordered ZnSnP2 materials. Experimental measurements support these predictions, suggesting a graded solar cell system that absorbs light across a wide spectrum.

Metal oxides hold the key to cheap, green energy

A new study by Binghamton University researcher Louis Piper reveals that metal oxides can be tailored to meet specific needs, enabling efficient energy generation and flat screen display technology. By adjusting the band gap of these materials, researchers can optimize their electronic properties for various applications.

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.

Bilayer graphene works as an insulator

A UC Riverside-led team has identified a property of bilayer graphene that becomes insulating when the number of electrons on the sheet is close to zero. This finding suggests promising routes for digital and infrared technologies, including trilayer and tetralayer graphene with larger energy gaps.

Progress on research of polymer solar cells

Scientists have designed a new type of polymer solar cell that can effectively tune its band gap and energy levels by incorporating different acceptor groups. The resulting polymers exhibit promising photovoltaic properties, with high open-circuit voltages achieved despite their varying band gaps.

Apple iPad Pro 11-inch (M4)

Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.

2 graphene layers may be better than 1

Researchers at NIST have shown that two layers of graphene exhibit random patterns of alternating positive and negative charges due to substrate interactions. This discovery brings graphene closer to being used in practical electronic devices.

The practical full-spectrum solar cell comes closer

Researchers have demonstrated a solar cell that responds to virtually the entire solar spectrum and can be manufactured using one of the semiconductor industry's most common methods. The new design promises highly efficient solar cells with practical production costs.

Water could hold answer to graphene nanoelectronics

Researchers at Rensselaer Polytechnic Institute have developed a new method to tune the band gap of graphene using water. By exposing graphene to humidity, they created a band gap in the nanomaterial, opening the door to new graphene-based transistors and nanoelectronics.

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

Nanoribbons for graphene transistors

Researchers successfully grow graphene ribbons with adjustable properties by creating narrow ribbons with well-defined edges. The new method enables the production of components with specific optical and electronic properties, paving the way for the development of future nanoelectronics.

New alloys key to efficient energy and lighting

Researchers at Arizona State University have developed a new quaternary alloy semiconductor nanowire material that can be used to create more efficient photovoltaic cells and light-emitting diodes. The alloy, which has a wide range of band gaps, can also be used to produce colors for displays.

Tunable semiconductors possible with hot new material called graphene

Scientists at the University of California, Berkeley, have created tunable semiconductors using bilayer graphene, which can change its bandgap and Fermi energy with an applied electric field. This breakthrough enables the creation of reconfigurable electronic devices, potentially holding millions of differently tuned devices.

Sky & Telescope Pocket Sky Atlas, 2nd Edition

Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.

Bilayer graphene gets a bandgap

Researchers have successfully engineered a tunable bandgap in bilayer graphene, opening the way for nanoscale electronics and photonics. The breakthrough allows for precise control over the bandgap size and doping level, enabling new types of nanotransistors and nano-LEDs.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

Inverse woodpile structure has extremely large photonic band gap

The new material has one of the widest photonic band gaps reported, enabling control over light flow in applications like low-threshold lasers and solar cells. The structure's unique fabrication technique allows for complex designs that could also be used as microelectromechanical systems or biological devices.

The CNT-DNA wrap: A hefty hybrid for carbon nanotubes

Scientists at Lehigh University are studying single-walled CNTs wrapped with single-stranded DNA to improve sorting and placement. The DNA-CNT hybrid has proven effective in dispersion and holds promise for aiding in the critical task of placing tubes on substrates.

A new model of quantum dots: Rethinking the electronics

Researchers have found that a quantum dot's dielectric function is virtually identical to its bulk material counterpart, except near the surface. This discovery could revolutionize electronic devices by allowing for more precise control over their properties.

Magnetic forces may turn some nanotubes into metals

Scientists found that semiconducting nanotubes' band gap shrunk steadily under strong magnetic forces, confirming quantum mechanical theories and shedding new light on carbon nanotubes' unique electrical properties.

Lehigh researchers hone radiation source for THz devices

Terahertz (THz) frequencies have potential applications in medicine, remote sensing, imaging, and satellite communications. Lehigh researcher Yujie J. Ding has developed a compact THz radiation source that can generate coherent waves with high output powers, enabling new diagnostic tools and monitoring technologies.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.