Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Atoms on the edge

Researchers at MIT have directly observed edge states in a cloud of ultracold atoms, capturing images of atoms flowing along a boundary without resistance. This discovery could enable super-efficient energy transmission and data transfer in materials.

Cytophysics: how cell nuclei squeeze through

LMU researchers investigated how cell nuclei change shape to migrate through tight spaces, revealing reversible nuclear deformation and adaptation of pulling and pushing forces. The study suggests a biphasic dependence of migration speed on channel width, with maximal transition rates at widths comparable to the nuclear diameter.

Advancement in particle physics: New encoding mechanism unveiled

Researchers have introduced a novel particle encoding mechanism that addresses longstanding issues in particle identification, enabling precise digital representation of complex particles. This new method is adaptable for future discoveries and has the potential to unlock new frontiers in particle physics.

Würzburg theory confirmed: Kagome superconductor makes waves

Researchers confirm Kagome superconductor, a class of materials with star-shaped structure exhibiting unique electronic, magnetic, and superconducting properties. The discovery enables novel electronic components, such as superconducting diodes, with potential for energy-efficient quantum devices.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Mary Bishai named Distinguished Scientist Fellow

Mary Bishai, a Brookhaven physicist, has been recognized as a Distinguished Scientist Fellow by the DOE Office of Science. Her work on understanding neutrinos' properties has led to extraordinary leadership and service to the particle physics community. As a mentor, she is guiding the next generation of researchers.

Achieving quantum memory in the hard X-ray range

A team of researchers has demonstrated a novel way of storing and releasing X-ray pulses at the single photon level, enabling future X-ray quantum technologies. This breakthrough uses nuclear ensembles to create long-lived quantum memories with improved coherence times.

Fluke 87V Industrial Digital Multimeter

Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.

Chasing and counting mesons

Karthik Suresh's dissertation on meson decay in GlueX earned him the prestigious 2023 Jefferson Science Associates (JSA) Thesis Prize. His work built upon previous research by Ahmed M. Foda and Amy M. Schertz, contributing to the development of a spectrum of mesons.

A breakthrough on the edge: One step closer to topological quantum computing

A team of experimental physicists has achieved a breakthrough in topological quantum computing by inducing superconducting effects in edge-only materials. This discovery could lead to the development of stable and efficient quantum computers, with potential applications in fields like quantum computing and technological advancements.

Controlling magnetism with polarized light

Researchers from the Max Born Institute have developed a method to manipulate magnetism using circularly polarized XUV radiation, generating large magnetization changes without thermal effects. The study demonstrates an effective non-thermal approach to controlling magnetism on ultrafast time scales.

GoPro HERO13 Black

GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.

Can a computer chip have zero energy loss in 1.58 dimensions?

Theoretical physicists at Utrecht University have discovered that fractals might hold the key to making electric currents flow without energy loss. By growing fractal structures on top of semiconductors, scientists have created materials with zero-dimensional corner modes and lossless one-dimensional edge states.

Magnetic excitations can be held together by repulsive interactions

Physicists at the University of Cologne have discovered that magnetic elementary excitations in BaCo2V2O8 crystals are bound by both attractive and repulsive interactions. The study found that repulsively bound states, which were unexpected due to their lower stability, can exist in these materials.

Gold nanoparticles kill cancer – but not as thought

Research using a novel microscopic technique reveals that gold nanoparticles' lethality to cancer cells is more complex than previously thought. Smaller nanoparticles can regenerate and divide after initial stress, while larger star-shaped particles cause oxidative stress leading to programmed cell death.

Precision instrument bolsters efforts to find elusive dark energy

Researchers have built the most precise experiment yet to look for gravitational anomalies caused by dark energy, using a lattice atom interferometer that can hold atoms in place for up to 70 seconds. While no deviation from predicted theory was found, the improved precision opens up possibilities for probing gravity at the quantum level.

Fundamental spatial limits of all-optical magnetization switching

A team of researchers has determined a fundamental spatial limit for light-driven magnetization reversal in nanometer-scale materials. They found that the minimum size for all-optical switching is around 25 nm due to ultrafast lateral electron diffusion, which rapidly cools illuminated regions.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

Uncovering the nature of emergent magnetic monopoles

Scientists have discovered unique periodic structures in manganese germanide that behave like magnetic monopoles and antimonopoles. The researchers studied the collective excitation modes of these structures, revealing a way to experimentally determine their spatial configuration.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

MOLLER experiment baselined and moving forward

The MOLLER experiment aims to make a precise measurement of the electron's weak charge, probing its interactions with other subatomic particles. This will provide a stringent test of the Standard Model, revealing valuable insights into fundamental forces.

The coldest lab in New York has a new quantum offering

Researchers at Columbia University have successfully created a unique quantum state of matter called a Bose-Einstein Condensate (BEC) out of molecules. The breakthrough, achieved by cooling sodium-cesium molecules to just five nanoKelvin, has the potential to advance powerful quantum simulations and unlock new areas of research.

Experimental physics leads to award-winning research

Holly Szumila-Vance has won the prestigious 2024 Guido Altarelli Award – Experimental Physics for her outstanding contributions to investigations of color transparency and other nuclear manifestations of QCD. Her work revealed new details of how protons interact with the strong force inside matter, but did not observe color transparent...

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

Theory and experiment combine to shine a new light on proton spin

A recent study combines experimental data with state-of-the-art calculations to reveal new details on the origins of proton spin. The research shows that gluons, which hold protons together, contribute significantly to the proton's spin, contradicting earlier findings.

Helping qubits stay in sync

Researchers at Washington University in St. Louis have developed a new technique to enhance quantum entanglement stability in qubits. This breakthrough addresses the challenges of maintaining coherence and reliability in quantum systems.

What is "time" for quantum particles?

Physicists from TU Darmstadt propose a new approach to define and measure the time required for quantum tunneling. They suggest using Ramsey clocks, which utilize the oscillation of atoms to determine the elapsed time. The proposed method may correct previous experiments that observed particles moving faster than light during tunneling.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

The interference of many atoms, and a new approach to boson sampling

Researchers demonstrate novel method of boson sampling using ultracold atoms in a two-dimensional optical lattice, overcoming previous limitations in simulations and photon-based experiments. The achievement showcases the potential of quantum devices for performing non-classical computational tasks.

Experiment opens door for millions of qubits on one chip

Researchers at the University of Basel and NCCR SPIN have successfully coupled two hole-spin qubits, enabling fast and precise controlled spin-flip operations. This achievement is a significant milestone in the quest for practical quantum computing, with millions of qubits on a single chip.

Attosecond core-level spectroscopy reveals real-time molecular dynamics

Scientists have developed a powerful tool to investigate molecular dynamics in real-time, tracing the evolution of gas-phase furan and uncovering its ring-opening dynamics. The technique, based on attosecond core-level spectroscopy, provides an extremely detailed picture of the relaxation process.

Physicists arrange atoms in extremely close proximity

MIT physicists arrange dysprosium atoms as close as 50 nanometers apart, a limit previously set by the wavelength of light. This allows for enhanced magnetic forces, thermalization, and synchronized oscillations, opening new possibilities for studying quantum phenomena.

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.

Revealing the quantumness of gravity

Researchers propose an experiment to test the quantum nature of gravity without relying on entanglement. By using massive harmonic oscillators, they aim to reveal the quantumness of gravity in a way that was previously challenging due to the difficulty in creating heavy mass states.

When does a conductor not conduct?

A new atomically-thin material has been discovered that can switch between an insulating and conducting state by controlling the number of electrons. This property makes it a promising candidate for use in electronic devices such as transistors.

Making light ‘feel’ a magnetic field like an electron would

Researchers at Penn State have made light effectively experience a magnetic field within a photonic crystal structure. This breakthrough could lead to more efficient lasers and other photonic technologies by increasing the interaction between light and matter.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

Scientists trigger mini-earthquakes in the lab

Researchers at the Universiteit van Amsterdam triggered mini-earthquakes in a lab by applying a small seismic wave to a granular material. The study shows that these events can be understood using laboratory-scale frictional experiments, and its findings are relevant for understanding remote earthquake triggering in larger faults.

Novel UV broadband spectrometer revolutionizes air pollutant analysis

The novel UV broadband spectrometer enables real-time analysis of air pollutants and their interaction with other gases and sunlight. It combines high spectral resolution, short measurement times, and large bandwidth, making it suitable for sensitive measurements and monitoring of gas concentrations.

Aranet4 Home CO2 Monitor

Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.

Magnetic avalanche triggered by quantum effects

Researchers at Caltech have demonstrated quantum Barkhausen noise, which is the collection of little magnets flipping in groups. This effect is caused by quantum tunneling and co-tunneling, leading to macroscopic changes in magnetization, even without classical effects.

Scientists propose a new way to search for dark matter

Researchers at SLAC National Accelerator Laboratory propose detecting thermalized dark matter, which builds up on Earth's surface, using quantum sensors. The study suggests that superconducting quantum devices could be redesigned to detect low-energy galactic dark matter particles.

DJI Air 3 (RC-N2)

DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.

Spectroscopy and theory shed light on excitons in semiconductors

Researchers have developed a new method to visualize the quantum mechanical wave function of excitons in organic semiconductors. This understanding is essential for developing more efficient materials with organic semiconductors. The technique, known as photoemission exciton tomography, provides insights into the behavior of excitons i...

Good prospects for altermagnets in spin-based electronics

Researchers at Johannes Gutenberg Universitaet Mainz have demonstrated altermagnetic electronic band splitting associated with spin polarization in CrSb, a good conductor at room temperature. The magnitude of this splitting is extraordinary and promises electronic applications for altemagnets.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.

Network of quantum sensors boosts precision

Physicists have developed a method to make quantum signals accessible again by analyzing simultaneous changes in states of multiple sensors. This approach enables precise measurement of magnetic field variations and distance between sensors, outperforming entanglement-based methods.

Scientists make nanoparticles dance to unravel quantum limits

Researchers demonstrate a way to amplify interactions between particles to overcome environmental noise, enabling the study of entanglement in larger systems. This breakthrough holds promise for practical applications in sensor technology and environmental monitoring.

Nikon Monarch 5 8x42 Binoculars

Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.

First-ever atomic freeze-frame of liquid water

Researchers use a new technique to isolate energetic electron motion in liquid water, providing a window into electronic structure on an attosecond timescale. This breakthrough resolves long-standing debates about X-ray signals in liquid water and opens up a new field of experimental physics.

Altermagnetism proves its place on the magnetic family tree

Researchers have proved the existence of altermagnetism, a new type of magnetism that offers distinct advantages for next-generation magnetic memory technology. Altermagnets exhibit strong spin-dependent phenomena like ferromagnets while possessing zero net magnetization.

How electron spectroscopy measures exciton “holes”

Scientists use a special microscope to break up the bond between electrons and holes in semiconductors, revealing that hole interactions determine charge transfer processes. The findings have implications for future computer and photovoltaic technologies.

Meta Quest 3 512GB

Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.

Dortmund physicists develop highly robust time crystal

Researchers at TU Dortmund University have developed a highly durable time crystal that outlasts previous experiments by tens of thousands of times. The team discovered a way to stabilize the crystal using nuclear spins, enabling it to maintain its periodic behavior for up to 40 minutes.