Researchers at UMD successfully guided light in a 45-meter-long air waveguide, creating a high-density core to guide a laser. The technique utilizes ultra-short laser pulses to create a plasma that heats the air, expanding it and leaving a low-density path behind.
Researchers at the University of Maryland successfully guided a 45-meter-long beam of light through an unremarkable hallway, pushing the limits of an innovative technique. The team utilized ultra-short laser pulses to create a plasma that heated air, forming a high-density core and enabling efficient light delivery.
Researchers at TU Wien have created a new, simpler method for producing intense, high-energy X-ray pulses using ytterbium lasers and a gas medium. This technique increases the efficiency of X-ray radiation production, allowing for better monitoring of chemical reactions in real-time and more efficient nanostructure production.
Apple MacBook Pro 14-inch (M4 Pro)
Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.
A team of researchers has developed an experimental method to manipulate the Rydberg state excitation in hydrogen molecules using bicircular two-color laser pulses. By controlling the photon effect and field effect, they were able to generate Rydberg states while varying the extent to which each effect contributed to the process.
Scientists successfully record phase distribution of electrons, unveiling detailed structure of its complex wavefunction. The method uses attosecond laser pulse to visualize electron wavefunction in a gas.
Researchers have developed a new spectroscopy technique called filament- and plasma-grating-induced breakdown spectroscopy (F-GIBS), which improves the sensitivity of trace metal detection in liquid samples. The technique uses fluid jets to analyze aqueous solutions and achieves high precision by avoiding detrimental influences of liqu...
Researchers have developed a novel air-laser-based standoff Raman spectrometer with high temporal and frequency resolutions. The device enables remote detection of chemical species in real time, monitoring their rovibronic levels and populations in the frequency domain.
Researchers at Ruhr-University Bochum have developed a novel approach to water-based circuits using laser technology. The method creates an ultra-fast liquid switch that can conduct electricity at terahertz frequencies, similar to metals.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
Scientists have successfully demonstrated light-induced locomotion in a nonliquid environment using antimony telluride plates. The new type of motion, driven by thermal effects, enables efficient actuation in vacuum systems, opening up possibilities for mobile photonic modulation and multimode micro robots.
Researchers developed a novel method to create deep nanochannels in hard and brittle materials like silica, diamond, and sapphire. By employing femtosecond laser direct writing technology, they achieved sub-100-nm feature sizes and ultrahigh aspect ratios.
Researchers developed a new technique using femtosecond laser pulses to fabricate precision ultrathin mirrors for space telescopes. The method can help correct errors in mirror fabrication and enable sharper images of astronomical x-rays.
Researchers from the Max Born Institute found that magnesium ions reduce ultrafast fluctuations in water's hydration shell, slowing solvation dynamics. The study reveals a short-range effect of individual ion pairs on dilute aqueous systems.
Researchers at the Max Born Institute have used novel ultrashort soft X-ray spectroscopy to study the fate of molecular nitrogen when an electron is kicked out. They found that the B state has a similar degree of excitation as the X state, contradicting previous models. Instead, a coherent interplay between light fields enables lasing ...
Nikon Monarch 5 8x42 Binoculars
Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.
A team at Max Born Institute develops methods to reliably create and guide magnetic skyrmions at controlled positions, enabling the study of their dynamics and potential applications in computing and data storage. By employing focused helium-ion irradiation and nanopatterned reflective masks, researchers can control the generation and ...
Scientists have successfully implemented the world's fastest two-qubit gate in a quantum computer, achieving an impressive speed of 6.5 nanoseconds using cold atoms cooled to near absolute zero and optical tweezers. This breakthrough has significant implications for the development of ultrafast quantum computing hardware.
Researchers have developed a new chip-based beam steering device that eliminates aliasing errors, enabling high-quality beam steering over large fields of view. The device, published in Optica, has the potential to revolutionize lidar applications in autonomous driving, virtual reality, and biomedical sensing.
Scientists at Max Born Institute create novel method to probe magnetic thin film systems, identifying heat injection from platinum layer as cause of magnetization changes. The approach allows femtosecond temporal and nanometer spatial resolution, paving way for studying ultrafast magnetism and device-relevant geometries.
FeRh, a metal with antiferromagnetic and ferromagnetic phases, has its phase transition kinetics measured using ultrafast techniques. The study reveals new insights into the ultrafast dynamics of magnetic materials.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
Physicists at FAU have designed a framework to observe light-electron interactions using traditional SEMs, reducing costs and increasing experiment range. This photon-induced electron microscopy (PINEM) technique allows for precise measurements of energy changes in electrons.
Researchers from FAU and University of Rochester demonstrate how laser pulses can induce electron waves in graphene, creating real and virtual charges that can be processed as binary logic. This technology has the potential to make future computers over a million times faster.
A joint research team investigated the generation of low-energy protons in dissociative ionization of H2 using time-energy-resolved spectroscopy. They found that low-energy protons are produced via dipole-transition at large bond lengths, contrary to the expected bond-softening scenario.
Scientists at Rochester and Erlangen develop logic gates that operate at femtosecond timescales, paving the way for ultrafast electronics and information processing. The breakthrough involves harnessing and independently controlling real and virtual charge carriers in gold-graphene-gold junctions with laser pulses.
Researchers have demonstrated a new method for guiding light in an energy-scalable manner using two refocusing mirrors and thin nonlinear glass windows. This approach enables the compression of laser pulses to tens of femtosecond duration with gigawatt peak power.
Meta Quest 3 512GB
Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.
Researchers at INRS have developed a new method to study the spin dynamics inside rare earth materials, promising for spintronic devices. The breakthrough uses a tabletop ultrafast soft X-ray microscope to spatio-temporally resolve spin dynamics.
Scientists at KAUST have studied charge carrier behavior in perovskite thin films using laser pulses and terahertz radiation. They found that increased density of charge carriers narrows the energy gap for electrons to be excited by light, and charge carriers become more localized at higher densities.
Scientists have discovered a speed limit for computer chips, with one petahertz being the maximum frequency for signal transmission. The research uses ultra-short laser pulses to create electrical currents in dielectric materials, allowing for faster data transmission.
Apple iPad Pro 11-inch (M4)
Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.
Researchers investigated the shortest possible time scale of optoelectronic phenomena and found that it cannot be increased beyond one petahertz. The experiments used ultra-short laser pulses to create free charge carriers in materials, which were then moved by a second pulse to generate an electric current.
Researchers found that laser-induced reduction of graphene oxide can produce high-quality graphene by reducing defects and improving lattice structure. At high temperatures, oxidation occurs near defects but is balanced by annealing in the center of the sheet, resulting in well-structured material.
Researchers developed a new technique called dual-detection impulsive vibrational spectroscopy (DIVS) to measure two distinct types of vibrational signals. DIVS enables synchronous measurement of THz- and fingerprint region vibrations, offering high temporal resolution for real-time chemical analysis.
Scientists have developed a new type of ultrafast laser oscillator that generates sub-50 fs pulses with broad spectral widths, exceeding the emission bandwidth of traditional gain media. The technique is pulse-energy and average-power scalable and applicable to other types of gain media.
DJI Air 3 (RC-N2)
DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.
A research team from the University of Jena has made an important breakthrough in generating high-energy proton radiation using laser-plasma interaction. By precisely adjusting parameters such as foil thickness, laser focusing, and pulse duration, they have achieved a maximum energy yield that could enable the development of smaller an...
Quantum entanglement is studied in attosecond laser laboratory experiments, where neutral hydrogen molecules are ionized using an attosecond pulse. The experiment reveals a competition between vibrational coherence and entanglement, demonstrating the breakdown of local realism.
Researchers from SUTD and A*STAR IMRE demonstrate the use of chalcogenide nanostructures to reversibly tune Mie resonances in the visible spectrum, paving the way for high resolution colour displays. The technology relies on phase change materials, including antimony trisulphide nanoparticles.
Sony Alpha a7 IV (Body Only)
Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.
A new wearable headset, Kernel Flow, monitors brain activity using time-domain fNIRS. The system can record high-resolution brain signals from across the brain with performance similar to conventional systems.
Researchers at GIST used ultrafast X-ray pulses to study warm dense copper electrons, revealing that bonds harden before melting. The findings could improve understanding of extraordinary material properties and their underlying mechanisms.
Scientists create a process called 'coherent optical engineering' that can dramatically change the properties of materials without generating heat. The breakthrough uses lasers to alter electron energy levels in a way that is reversible and free from unwanted heating.
Researchers at Skoltech have created an optoacoustic endoscopic probe that can analyze atherosclerotic plaques by forcing molecules to sound their presence. The device uses laser light to make biomarkers oscillate, producing ultrasound signals that can be detected by a sensitive microphone.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
A team led by Prof. Dr. Maria Hoflund developed a method to focus broadband XUV radiation with a high demagnification factor, enabling the creation of high-intensity XUV pulses with attosecond pulse duration.
Researchers at ETH Zurich demonstrate the first direct femtosecond-pulse emission from a quantum cascade laser in the mid-infrared region, generating powerful pulses as short as 630 femtoseconds and 4.5 watt peak power. This breakthrough opens up practical routes to accessing ultrafast dynamics across the molecular fingerprint region.
Researchers at Harvard SEAS developed a new silicon coating that counters chromatic dispersion in transparent materials like glass. The ultra-thin coating uses precisely designed silicon pillars to capture and re-emitting red light, allowing slower-moving blue light to catch up.
Researchers have made a significant advance in shrinking the size of particle accelerators by using intense lasers and plasmas. They demonstrated functional equivalent of a confining metal tube waveguide, generating plasma waveguiding of up to 300-terawatt laser pulses, and accelerating electrons up to 5 GeV over a distance of only 20 cm.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
A research team led by Professor Luca Razzari at INRS has successfully generated coherent, intense visible light pulses with femtosecond duration using a simplified setup. This innovation opens up new possibilities for studying various phenomena in physics, chemistry, and biology.
Researchers developed a novel spintronic-metasurface terahertz emitter that generates broadband, circularly polarized, and coherent terahertz waves. The design offers flexible manipulation of the polarization state and helicity with magnetic fields, enabling efficient generation and control of chiral terahertz waves.
The attoscience community has clarified points of tension through discussions among researchers, exploring the scope and nature of analytical and ab-initio approaches. Researchers also investigated the physical observables of quantum tunnelling experiments, aiming to explain differing conclusions.
Creality K1 Max 3D Printer
Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.
The study reveals that the interaction between phonons and electrons is crucial for ultrafast demagnetization. The data show a temperature threshold below which this mechanism does not occur, indicating another microscopic mechanism at lower temperatures.
A team at HZB and PTB developed a method to measure the lateral expansion of the electron beam in laser plasma accelerators, achieving resolutions in the micrometre range. This technique uses coherent radiation of electron pulses via interference patterns to determine the beam cross-section.
A new optical switch created by an international team could replace electronic transistors in computers, manipulating photons instead of electrons. The device requires no cooling and is fast, with operations per second between 100 and 1,000 times faster than current commercial transistors.
Scientists used picosecond ultrasonics to measure atomic bonds in 2D materials without damaging them. The study found that sound travels at different speeds in different phases of the same substance, opening possibilities for designing materials with tunable properties.
GoPro HERO13 Black
GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.
Researchers at the University of Konstanz have discovered that MXenes can be switched repeatedly between a flat and a rippled shape by applying femtosecond laser pulses. This discovery could lead to improved energy storage capacity, enhanced catalytic or antibiotic activity, and new applications in sensing and active plasmonic devices.
Researchers have discovered a way to induce magnetic waves in antiferromagnets using ultrafast laser pulses, potentially leading to faster and more efficient data storage. This technology could endow materials with new functionalities for energy-efficient and ultrafast data storage applications.
University of Rochester researchers produce highly chirped pulses with relatively low-quality equipment, increasing possibilities for high-capacity telecommunication systems and astrophysical calibrations. The new method uses normal dispersion cavities, which are more common and can generate stable pulses despite high energy loss.
Researchers at Max Born Institute created and annihilated skyrmions using laser pulses, demonstrating precise control over their density. The process has potential for use in stochastic computing, enabling fast and energy-efficient data storage and processing.
Rigol DP832 Triple-Output Bench Power Supply
Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.
Researchers have demonstrated a record-high laser pulse intensity of over 1023 W/cm2 to study complex interactions between light and matter. This achievement will enable exploration of high-energy cosmic rays and the development of new sources for cancer treatment.
Researchers at CoReLS have realized the highest laser intensity ever reached, exceeding 1023 W/cm2. This achievement allows for the exploration of extreme physical conditions and novel physical phenomena, such as Compton scattering and photon-photon scattering in nonlinear regimes.
Researchers from Osaka University have made a groundbreaking discovery about the behavior of laser pulses in free space. They found that laser pulse intensity can propagate in a straight line, with the forward-propagating velocity being the speed of light and the backward-propagating velocity being subluminal.
Researchers at the University of Tokyo have developed a new way to observe laser interactions, enabling accurate control over laser-based manufacturing processes. The discovery could lead to significant improvements in precision and efficiency in industries such as laboratory, commercial, and industrial applications.
Researchers at the University of Cambridge have identified a new material that can switch between a window and a mirror in a quadrillionth of a second, paving the way for faster computing. The material, Ta2NiSe5, exhibits ultra-fast switching capabilities, surpassing current computer speed.
Aranet4 Home CO2 Monitor
Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.
Scientists study how tuning aspects of a powerful laser beam can affect the acceleration of electrons, finding that optimal values of laser beam waist increase maximum acceleration. They observe significant energy gains in full and half-pulse interactions, reaching up to 1 GeV.
Researchers at the Heidelberg Max Planck Institute for Nuclear Physics have investigated ultrafast fragmentation of hydrogen molecules in intense laser fields using a new method. They used the rotation of the molecule as an internal clock to measure the timing of the reaction triggered by a second laser pulse.
Researchers at Tohoku University have created an innovative technology that drastically reduces energy consumption for data storage. The new scheme uses a single laser pulse to induce switching of ferromagnetic Co/Pt layers, reducing the need for magnetic-field-induced switching.
GQ GMC-500Plus Geiger Counter
GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.