Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Material breakthrough paves way for major energy savings in memory chips

Researchers at Chalmers University of Technology have discovered an atomically thin material that enables two opposing magnetic forces to coexist, reducing energy consumption in memory devices by a factor of ten. This breakthrough could lead to major energy savings in AI, mobile technology and advanced data processing.

Pushing boundaries in ultrafast magnetization switching

Researchers discovered that ultrafast magnetization switching proceeds with a speed of about 2000 meters per second, not uniformly throughout the material. A moving boundary propagates through the film, sweeping through the entire layer in roughly 4.5 ps.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

A fully liquid Earth’s core also generates a magnetic field

A team of geophysicists from ETH Zurich and SUSTech, China, used computer models to simulate whether a completely liquid core could generate a stable magnetic field. Their simulations showed that the Earth's magnetic field was generated in the early history of the Earth in a similar way to today.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

UMass Amherst team finds exception to laws of thermodynamics

A team of researchers led by a graduate student discovered a novel property in certain liquids that contradicts long-held expectations from the laws of thermodynamics. Magnetized particles increase interfacial tension, bending the boundary between oil and water into a specific shape.

Reading magnetic states faster – in far infrared

Scientists at Helmholtz-Zentrum Dresden-Rossendorf have developed a new method to determine the magnetic orientation of a material using terahertz light pulses. This technique enables reading out magnetic structures within picoseconds, opening up possibilities for ultrafast data storage and processing.

Creality K1 Max 3D Printer

Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.

Spinning neutron star gains enormous magnetic fields

Researchers identified a new process leading to formation of low-field magnetars, solving the mystery that puzzled scientists since their discovery in 2010. The team used advanced simulations to model magneto-thermal evolution of neutron stars, finding that a specific dynamo process can generate weaker magnetic fields.

This multiferroic can take the heat - up to 160℃

Researchers developed a high-temperature multiferroic that operates stably at 160℃, surpassing previous limits of 20℃. This breakthrough enables the creation of power-efficient spintronics devices and advanced optical components.

‘Brand new physics’ for next generation spintronics

Researchers at the University of Utah and UCI have discovered a unique quantum behavior that allows for the manipulation of electron-spin and magnetization through electrical currents. This phenomenon, dubbed anomalous Hall torque, has potential applications in neuromorphic computing.

Physicists magnetize a material with light

Researchers at MIT have created a new magnetic state in an antiferromagnetic material using terahertz laser light, enabling controlled switching and potentially leading to more efficient memory chips. The technique provides a powerful tool for manipulating magnetism and advancing information processing technology.

Davis Instruments Vantage Pro2 Weather Station

Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.

The magnet trick: New invention makes vibrations disappear

A new invention at TU Wien has created a method to dampen vibrations in precision devices such as high-performance astronomical telescopes. The technology uses electropermanent magnets, which are permanent magnets with a coil, to suppress vibrations efficiently and increase performance.

Metamaterials for the data highway

Scientists from HZDR, TU Chemnitz, TU Dresden, and Forschungszentrum Jülich have demonstrated the storage of entire bit sequences in cylindrical domains. The team's findings could lead to novel types of data storage and sensors, including magnetic variants of neural networks.

Meta Quest 3 512GB

Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.

Controlling magnetism with polarized light

Researchers from the Max Born Institute have developed a method to manipulate magnetism using circularly polarized XUV radiation, generating large magnetization changes without thermal effects. The study demonstrates an effective non-thermal approach to controlling magnetism on ultrafast time scales.

Moon ‘swirls’ could be magnetized by unseen magmas

Researchers propose that lunar swirls are caused by subsurface magma, which creates a magnetic anomaly. The team's experiments show that ilmenite can react and form iron metal under the right conditions, producing a magnetizing effect.

Materials research revolutionized by a small change

Researchers at Pohang University of Science & Technology (POSTECH) made a small change to develop highly efficient SOT materials. By creating an imbalance in the spin-Hall effect, they controlled magnetization switching without magnetic fields, achieving 2-130 times higher efficiency and lower power consumption than known single-layer ...

Fundamental spatial limits of all-optical magnetization switching

A team of researchers has determined a fundamental spatial limit for light-driven magnetization reversal in nanometer-scale materials. They found that the minimum size for all-optical switching is around 25 nm due to ultrafast lateral electron diffusion, which rapidly cools illuminated regions.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

Researchers show it’s possible to teach old magnetic cilia new tricks

Researchers have developed a method to create and repurpose artificial hairs with magnetic properties, enabling the control of motion at room temperature. The technique involves programming and reprogramming the magnetization of the magnetic particles in the cilia, allowing for changes in their behavior.

Magnetic revolution: New soft magnetic materials for a high-frequency future

Researchers from Songshan Lake Materials Laboratory have developed amorphous soft magnetic composites with improved properties for use in next-generation electronics. The critical state approach enables the creation of strong yet efficient magnetic materials, paving the way for more efficient power transmission and storage.

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.

Magnetization by laser pulse

Researchers at Helmholtz-Zentrum Dresden-Rossendorf have identified a promising phenomenon where certain iron alloys can be magnetized using ultrashort laser pulses. The team has now expanded its findings to an iron-vanadium alloy, revealing a new class of materials with potential applications in spintronics and magnetic sensors.

Atomic dance gives rise to a magnet

Researchers at Rice University have discovered a way to transform a rare-earth crystal into a magnet by using chirality in phonons. Chirality, or the twisting of atoms' motion, breaks time-reversal symmetry and aligns electron spins, creating a magnetic effect.

Unveiling the anomalous dynamics of non-collinear antiferromagnets

Researchers at Tohoku University and MIT have unveiled the anomalous dynamics of non-collinear antiferromagnets, revealing a unique interaction between electron spins and chiral-spin structure. The findings provide essential insights for controlling these materials, which could lead to the development of functional devices in spintronics.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.

Physicists discover ‘stacked pancakes of liquid magnetism’

Researchers have discovered a new phase of liquid magnetism in layered helical magnets, where magnetic dipoles behave like 'flattened puddles' with varying alignment between layers. This phenomenon, predicted by a computational model, may explain the unusual electronic behavior observed in these materials.

Laser pulses triple transition temperature for ferromagnetism in YTiO3

Scientists at the Max Planck Institute successfully induced high-temperature ferromagnetism in YTiO3 by applying laser pulses, raising the transition temperature to triple its original value. This breakthrough discovery opens new avenues for exploring and manipulating magnetic properties of materials.

GoPro HERO13 Black

GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.

Texas A&M researchers discover new circuit element

Researchers at Texas A&M University have identified a new circuit element called the meminductor, which exhibits memory-like properties. The discovery was made using a two-terminal passive system and proved the existence of meminductance in an inductor circuit element.

Looking at magnets in the right light

A team of researchers at the Max Born Institute developed a novel method for X-ray Magnetic Circular Dichroism (XMCD) spectroscopy using a laser-driven plasma source. This breakthrough enables precise determination of magnetic moments in buried layers without damaging samples, and can monitor ultrafast magnetization processes.

Sub-picosecond magnetization reversal in rare-Earth-free spin valves

Scientists have demonstrated a breakthrough in manipulating magnetic materials without using magnetic fields, paving the way for ultra-fast and energy-efficient memories. The researchers achieved sub-picosecond magnetization reversal in rare-earth-free spintronic structures, expanding the bandwidth of common devices.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

Magnetic sandwich mediating between two worlds

Researchers developed a method to efficiently couple terahertz waves with spin waves, clarifying fundamental mechanisms previously thought impossible. This breakthrough enables the development of novel spin-based technologies for data processing.

Making sense of coercivity in magnetic materials with machine learning

Researchers developed a new approach to analyze coercivity in soft magnetic materials using machine learning and data science. The method condenses relevant information from microscopic images into a two-dimensional feature space, visualizing the energy landscape of magnetization reversal. This study showcases how materials informatics...

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

Explainable AI-based physical theory for advanced materials design

Scientists at Tokyo University of Science developed an 'extended Landau free energy model' to analyze complex interactions in nanomagnetic devices, enabling causal analysis and visualization. The model proposed optimal structures for nano-devices with low power consumption.

Magnetized dead star likely has solid surface

A new study published in Science found that a highly magnetised dead star, known as a magnetar, is likely to have a solid surface with no atmosphere. The research team used data from the NASA satellite IXPE to observe the polarisation of X-ray light emitted by the star, which revealed a signature consistent with a solid crust.

How magnetism could help explain Earth’s formation

Researchers analyzed fluid dynamics and electrically conducting fluids to conclude the Earth must have been magnetized before or as a result of its formation. This discovery could help narrow down theories on the Earth-Moon system, with implications for future research.

Apple AirPods Pro (2nd Generation, USB-C)

Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.

Magnetic skyrmions – ready for take-off?

A team at Max Born Institute develops methods to reliably create and guide magnetic skyrmions at controlled positions, enabling the study of their dynamics and potential applications in computing and data storage. By employing focused helium-ion irradiation and nanopatterned reflective masks, researchers can control the generation and ...

First experimental demonstration of antiskyrmions

Magnetic antiskyrmions are stabilized in magnetic crystals and exhibit unique properties. The Forschungszentrum Juelich team successfully demonstrated the existence of these objects through high-resolution electron microscopy and advanced simulations.

Towards autonomous prediction and synthesis of novel magnetic materials

A team of researchers from Tokyo University of Science has developed an efficient integrated materials synthesis system for automatic discovery of new functional magnetic materials. Using artificial intelligence and computational science, they identified promising materials five times more efficiently than traditional trial-and-error a...

Apple iPad Pro 11-inch (M4)

Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.

Following ultrafast magnetization dynamics in depth

Scientists at Max Born Institute create novel method to probe magnetic thin film systems, identifying heat injection from platinum layer as cause of magnetization changes. The approach allows femtosecond temporal and nanometer spatial resolution, paving way for studying ultrafast magnetism and device-relevant geometries.

All-optical switching on a nanometer scale

Scientists at Max Born Institute demonstrate ultrafast emergence of all-optical switching by generating a nanometer-scale grating through interference of two pulses in the extreme ultraviolet spectral range. The researchers identify an intensity ratio as a fingerprint observable for AOS in diffraction experiments.

Insight into the mystery of magnetism

FeRh, a metal with antiferromagnetic and ferromagnetic phases, has its phase transition kinetics measured using ultrafast techniques. The study reveals new insights into the ultrafast dynamics of magnetic materials.

Earth’s magnetic poles not likely to flip: study

Researchers analyzed burnt artifacts, volcanic samples, and sediment cores to recreate the Earth's magnetic field over 9,000 years. Their new modeling technique predicts that the South Atlantic Anomaly will disappear within 300 years, ruling out an impending polarity reversal.

Aranet4 Home CO2 Monitor

Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.

Researchers use light for thermomagnetic recording on silicon waveguide

Scientists have developed a new method of recording data using light on silicon waveguides, enabling non-volatile and high-performance magneto-optical memories. This breakthrough could lead to all-optical alternatives in telecommunications infrastructure and applications in optical computing.

Mechanism ‘splits’ electron spins in magnetic material

Researchers have discovered a unique mechanism called 'momentum-dependent spin splitting' that allows for strong spin currents and efficient magnetic switching. This discovery could lead to advances in magnetic random-access memory technologies.