Researchers at uOttawa have found that amorphous solids selectively absorb light of different polarizations, contradicting prior beliefs. The study reveals the importance of short-to-medium range order within disordered solids in influencing how materials react to light.
Aranet4 Home CO2 Monitor
Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.
Researchers have created a computer using an array of VCSELs that leverages optical feedback to efficiently solve complex optimization problems. The system encodes information in linear polarization states, minimizing interactions between variables and overcoming the von Neumann bottleneck.
Researchers at Aston University have discovered that aging skin exhibits distinct optical properties under polarised laser light. This finding could lead to the development of non-invasive light-based techniques for early detection and monitoring of skin conditions, including cancer.
Scientists at Shanghai Institute of Microsystem and Information Technology enhance the photon-number-resolving capability of single-photon detectors by widening superconducting strips. This results in better dynamic range and fidelity, enabling true-photon-number resolution up to 10.
Researchers developed a spiral-shaped lens that provides clear focus at different distances in varying light conditions, potentially revolutionizing ophthalmology. The lens works by creating multiple clear focus points through optical vortices, allowing for improved depth perception and visual acuity.
A team of researchers has identified the intrinsic interactions responsible for light-induced ferroelectricity in SrTiO3. By measuring fluctuations in atomic positions, they found that mid-infrared excitation suppresses certain lattice vibrations, leading to a more ordered dipolar structure.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
Photonic integrated circuits use photons instead of electrons for calculations, enabling improved performance and cost-effectiveness. A new study maps the internal light motion without damaging the chip, paving the way for applications in communication, imaging, and quantum computing.
Researchers from Osaka University and IMRA AMERICA have developed a photonics-based wireless link that breaks speed records for data transmission. The system achieved a single-channel transmission rate of 240 gigabits per second using ultra-low phase noise, paving the way for near-instantaneous global communication.
GIST researchers develop tunable optical properties in nanostructures, enabling applications in wound healing, drug delivery, and secure verification. A clock-inspired design featuring magnesium nano-rotamers demonstrates programmable polarization-resolved coloration.
Researchers studied how epithelial cells sense small changes in their environment using ion channels. They found that even small movements can trigger rapid intracellular calcium changes via mechanosensitive cation channels, which play a key role in touch sensation and other physiological functions.
Researchers developed a carbon-based tunable metasurface absorber with an ultrawide, tunable bandwidth in the THz range. The absorber boasts high absorption efficiency and insensitivity to polarization angles, paving the way for advanced technological applications.
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
A new technique using optical orbital angular momentum lattice (OAML) multiplexed holography boosts information storage capacity and offers novel approaches for implementing high-capacity holographic systems. The research unlocks supplementary encrypted dimensions, enhancing storage capacity and overcoming limitations of traditional me...
The BETTER project, led by Dr. Sergei Sokolovski, will develop a secure data sharing system for multi-source health data analysis, overcoming GDPR challenges and enabling healthcare professionals to compare and integrate data securely at lower costs.
A new system-on-chip employs silicon photonics to process broadband information, reducing latency through direct analogue processing. The device successfully tested in two dynamic interference scenarios, demonstrating error-free operation and maintaining signal-to-noise ratios over 15 dB.
Researchers use water as a nonlinear medium to create a supercontinuum white laser covering an impressive spectral range from UV to far infrared. The resulting ultrabroadband source has potential in ultrafast spectroscopy, hyperspectral imaging, and scientific research.
Kestrel 3000 Pocket Weather Meter
Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.
Researchers at EPFL and Max Planck Institute have successfully bridged the gap between light and electrons using a transmission electron microscope. They achieved this by generating dissipative Kerr solitons that interact with free electrons, allowing for ultrafast modulation of electron beams.
Researchers have developed a thermal management technique for photonic packages using glass substrates and thermoelectric vias, enabling precise temperature control. The technology, termed SimTEC, combines through glass vias partially filled with copper and thermoelectric materials to reduce thermal resistance between chips.
The University of Rochester is establishing a new NIH-funded center focused on developing FDA-qualified drug development tools related to barrier functions in disease. Researchers will create microphysiological systems with ultrathin membranes of human cells, aiming to reduce animal trials and improve drug efficacy.
Researchers have developed a method to coherently tile multiple titanium:sapphire crystals together, breaking through the current 10-petawatt limit. This technology enables ultra-intense ultrashort lasers with high conversion efficiencies, stable energies, and broadband spectra.
Davis Instruments Vantage Pro2 Weather Station
Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.
A research team developed an innovative optical technique, 'spectrum shuttle,' to produce and shape GHz burst pulses. The method facilitates ultrafast imaging within subnanosecond timescales, enabling analysis of rapid phenomena.
Photodynamic action weakens resistance to antibiotics in bacteria that attack airways, reducing the persistence of both standard and clinical strains. The study found that five cycles of PDI were sufficient to break the resistance of resistant bacteria.
A team of researchers at Ghent University and imec developed a silicon photonic temperature sensor that measures up to 180°C. The sensor was realized in the framework of the European SEER project, where partners focus on integrating optical sensors in manufacturing routines for composite parts.
Researchers explore quantum optical technology to solve scalability and accuracy issues in quantum computing, aiming to develop new drugs faster and more efficiently. Photon-based systems offer a solution by reducing physical components, increasing opportunities for scaling and stability.
Meta Quest 3 512GB
Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.
The researchers successfully created a stable hybrid laser by 3D printing micro-optics onto fibers, reducing the size and cost of traditional lasers. The new design enables high-power laser sources with compactness and robustness, opening up opportunities for applications such as autonomous vehicles, medical procedures, and lithography.
Embedding nanodiamonds in polymer can advance quantum computing and biological studies. The technique, developed at the University of São Paulo, enables integration of quantum emitters into photonic devices and cell marking applications.
Researchers developed an X-ray imaging technique that produces detailed images of living organisms at high resolution while minimizing radiation exposure. This advance enables small organisms to be studied over longer periods, revealing new insights into dynamic processes.
Sky & Telescope Pocket Sky Atlas, 2nd Edition
Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.
The study found that 3D integration can lead to significant heat spreading and crosstalk, reducing heater efficiency by up to -43.3% and increasing thermal crosstalk by up to +44.4%. However, optimizing design variables, such as spacing between µbumps and interconnect linewidth, can minimize the thermal penalty of 3D integration.
Researchers have successfully fabricated a self-assembling photonic cavity with atomic-scale confinement, bridging the gap between nanoscopic and macroscopic scales. The cavities were created using a novel approach that combines top-down and bottom-up fabrication techniques, enabling unprecedented miniaturization.
A new proof-of-concept study demonstrates the use of distributed fiber optic sensing to detect and analyze the sound of periodical cicadas. The technology shows promise for charting the populations of these famously ephemeral bugs, with potential applications in monitoring insect abundance across seasons and years.
Apple MacBook Pro 14-inch (M4 Pro)
Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.
Researchers at the University of Sydney have invented a compact silicon semiconductor chip integrating electronics with photonic components, significantly expanding radio-frequency bandwidth and filter control. The new technology has potential applications in advanced radar, satellite systems, wireless networks, and telecommunications,...
A team of scientists has developed new packaging technologies using TPL to address the challenges of photonic integrated circuits (PICs). The technology offers several unique advantages, including high-resolution 3D structures and customizable connections, which relax the alignment tolerance during PIC assembly.
Scientists at Politecnico di Milano have created photonic chips that can mathematically calculate the ideal shape of light to pass through any environment, increasing transmission capacity. The devices generate multiple overlapping beams with unique shapes, reducing interference and enabling high-bandwidth data transfer
Researchers at the University of Michigan developed a new way to move quasiparticles, which could lead to more efficient devices and room temperature quantum computers. The team used a laser to create a cloud of quasiparticles that migrated up the pyramid's edge and settled at the peak.
Scientists from UniSA, UoA and Yale University successfully scale up power in fibre lasers by three-to-nine times while maintaining beam quality. This breakthrough could have significant implications for remote sensing, gravitational wave detection and the defence industry.
Nikon Monarch 5 8x42 Binoculars
Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.
Researchers at NC State University developed an autonomous system called SmartDope to synthesize 'best-in-class' materials for specific applications in hours or days. It uses a self-driving lab to manipulate variables, characterize optical properties, and update its understanding of the synthesis chemistry through machine learning.
Researchers have developed a new form of microscopy that can probe details in an object's surface using evanescent waves. The technique, which detects radiation emitted by the object itself, has been used to examine thermally excited evanescent waves in dielectric materials with nanoscale precision.
Researchers developed a new OCT approach to directly image coordination of tiny hair-like structures in live organisms, giving a powerful tool to investigate cilia's role in the female reproductive system. The technique revealed unexpected behaviors that contradict current views and suggested new roles for cilia.
A new method called TWC-Swin effectively restores holographic images even under low spatial coherence and arbitrary turbulence, surpassing traditional convolutional network-based methods. The study demonstrates strong generalization capabilities, extending its application to unseen scenes.
DJI Air 3 (RC-N2)
DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.
Researchers have developed an integrated THz vortex beam emitter to detect rotating targets with remarkable precision. The system uses spiraling electromagnetic waves with orbital angular momentum to accurately measure the speed of a rotating object, with a maximum margin of error of just around 2 percent.
Researchers developed an accelerating wave equation to solve daily phenomena, revealing a well-defined direction of time. The framework also predicts energy conservation in certain situations, including exotic materials.
Researchers develop integrated photonic-electronic hardware capable of processing three-dimensional (3D) data, doubling parallelism for AI tasks and significantly boosting energy efficiency. The new chip can process 100 electrocardiogram signals simultaneously with high accuracy, outperforming electronic processors.
GoPro HERO13 Black
GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.
Researchers at Nanjing University have developed a miniaturized FSO system achieving an astonishing 9.16 Gbps bandwidth over 1 km link using readily available commercial fiber transceiver modules. The system enables automatic tracking and precision acquisition, eliminating the need for optical amplification.
Researchers have developed high-speed and high-responsivity photodetectors on a thin-film lithium niobate platform, achieving a 3-dB bandwidth of 110 GHz and responsivity of 0.4 A/W at 1550-nm wavelength. The devices demonstrate potential for ultra-high-speed optical communications and multi-function integrated quantum photonics.
Scientists at the University of Warsaw have developed a device that can convert quantum information between microwave and optical photons, enabling a crucial part of quantum network infrastructure. This breakthrough could lead to advancements in quantum computing, radio-astronomy, and high-speed internet connections.
Researchers at IBS Center for Quantum Nanoscience created a novel electron-spin qubit platform assembled atom-by-atom on a surface, demonstrating ability to control multiple qubits. This breakthrough enables application of single-, two-, and three-qubit gates.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
Researchers propose a new way to control moiré flatbands by adjusting the band offset of two photonic lattices, enabling the creation of novel multiresonant moiré devices. This breakthrough opens new opportunities in moiré photonics and promises to inspire future explorations into innovative moiré devices.
A team of scientists at Aalto University has created a bio-based transparent film from lignin nanoparticles, offering an alternative to toxic synthetic materials. The coating can be used on glasses, windshields, and other surfaces, and also displays coloured films with structural colours.
Researchers have developed a material for next-generation dynamic windows that can switch between transparent, infrared-blocking, and tinted modes. The material uses electrochromism and water to achieve this functionality.
Creality K1 Max 3D Printer
Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.
Researchers at Chalmers University of Technology have developed a new method to increase the efficiency of microcombs, raising their efficiency from around 1 percent to over 50 percent. This breakthrough enables high-performance laser technology for various applications in space exploration, healthcare, and other industries.
Researchers developed a high-performance photonic spiking neural network that surpasses traditional digital systems with its ultrafast performance and low power consumption. The new network achieved excellent classification accuracies of over 94%, outperforming benchmark results with small training sets.
Researchers have generated nearly deterministic OAM-based entangled states using QDs, enabling hybrid entanglement states in high-dimensional Hilbert spaces. This breakthrough offers a bridge between photonic technologies for quantum advancements.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
Researchers at Shanghai Jiao Tong University have developed a new scattering matrix method that can sculpt light output with minimal optimization time. The method offers unparalleled nonlinear scattered light control, enabling high-resolution scanning microscopy and particle trapping through dense, scattering media.
Scientists at Beijing Institute of Technology have developed an ultrafast quasi-three-dimensional technique, enabling higher dimensions to analyze ultrafast processes. This method breaks through the limitations of original observational dimensions, enhancing our ability to analyze ultra-fast processes comprehensively.
A hybrid system of electronic encoding and diffractive optical decoding transmits optical information with high fidelity through random, unknown diffusers. The system outperforms traditional approaches that only utilize a diffractive optical network or an electronic neural network for optical information transfer.
Researchers developed a modified bandit Q-learning algorithm that aims to learn optimal Q values for every state-action pair, balancing exploitation and exploration. The scheme relies on photonic systems to enhance learning quality, accelerating parallel learning through conflict-free decision-making.
Apple Watch Series 11 (GPS, 46mm)
Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.
The new microscope uses structured illumination and optical fibers to achieve fast super-resolution imaging over a wide field of view, enabling the study of individual cell responses to various drugs. The system can image multiple cells simultaneously with high resolution, providing statistical information about cell response.
Researchers develop a new method to assemble arrays of quantum rods onto patterned DNA scaffolds, enabling precise control over light emission and polarization. This breakthrough could enhance virtual reality devices and microLEDs with improved depth and dimensionality.
Researchers develop low-cost 3D nanoprinting system with nanometer-level accuracy for printing microlenses, metamaterials, and micro-optical devices. The system uses a two-step absorption process and integrated fiber-coupled laser diode, making it accessible to scientists beyond optical experts.
Researchers have developed a new measurement technique that uses the Kramers-Kronig relation to untangle complex helical light patterns from camera intensity measurements. This allows for single-shot retrieval of orbital angular momentum spectrum information, accelerating and simplifying the process compared to conventional on-axis int...
Quantum ghost imaging allows 3D imaging on a single photon level, enabling the lowest photon dose possible. The technique can be applied to image materials and tissues sensitive to light or drugs without risk of damage.
Apple iPad Pro 11-inch (M4)
Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.